• Top Read Articles
    Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    Temporal and Spatial Variations in the Climate Controls of Vegetation Dynamics on the Tibetan Plateau during 1982-2011
    Ting HUA,Xunming WANG
    2018, 35 (11): 1337-1346.   DOI: 10.1007/s00376-018-7064-3
    Abstract   ( 945 ) HTML   PDF (2166KB) (411)

    The ecosystem of the Tibetan Plateau is highly susceptible to climate change. Currently, there is little discussion on the temporal changes in the link between climatic factors and vegetation dynamics in this region under the changing climate. By employing Normalized Difference Vegetation Index data, the Climatic Research Unit temperature and precipitation data, and the in-situ meteorological observations, we report the temporal and spatial variations in the relationships between the vegetation dynamics and climatic factors on the Plateau over the past three decades. The results show that from the early 1980s to the mid-1990s, vegetation dynamics in the central and southeastern part of the Plateau appears to show a closer relationship with precipitation prior to the growing season than that of temperature. From the mid-1990s, the temperature rise seems to be the key climatic factor correlating vegetation growth in this region. The effects of increasing temperature on vegetation are spatially variable across the Plateau: it has negative impacts on vegetation activity in the southwestern and northeastern part of the Plateau, and positive impacts in the central and southeastern Plateau. In the context of global warming, the changing climate condition (increasing precipitation and significant rising temperature) might be the potential contributor to the shift in the climatic controls on vegetation dynamics in the central and southeastern Plateau.

    Impacts of the Autumn Arctic Sea Ice on the Intraseasonal Reversal of the Winter Siberian High
    Zhuozhuo Lü,Shengping HE,Fei LI,Huijun WANG
    2019, 36 (2): 173-188.   DOI: 10.1007/s00376-017-8089-8
    Abstract   ( 462 ) HTML   PDF (6751KB) (156)

    During 1979-2015, the intensity of the Siberian high (SH) in November and December-January (DJ) is frequently shown to have an out-of-phase relationship, which is accompanied by opposite surface air temperature and circulation anomalies. Further analyses indicate that the autumn Arctic sea ice is important for the phase reversal of the SH. There is a significantly positive (negative) correlation between the November (DJ) SH and the September sea ice area (SIA) anomalies. It is suggested that the reduction of autumn SIA induces anomalous upward surface turbulent heat flux (SHF), which can persist into November, especially over the Barents Sea. Consequently, the enhanced eddy energy and wave activity flux are transported to mid and high latitudes. This will then benefit the development of the storm track in northeastern Europe. Conversely, when downward SHF anomalies prevail in DJ, the decreased heat flux and suppressed eddy energy hinder the growth of the storm track during DJ over the Barents Sea and Europe. Through the eddy-mean flow interaction, the strengthened (weakened) storm track activities induce decreased (increased) Ural blockings and accelerated (decelerated) westerlies, which makes the cold air from the Arctic inhibited (transported) over the Siberian area. Therefore, a weaker (stronger) SH in November (DJ) occurs downstream. Moreover, anomalously large snowfall may intensify the SH in DJ rather than in November. The ensemble-mean results from the CMIP5 historical simulations further confirm these connections. The different responses to Arctic sea ice anomalies in early and middle winter set this study apart from earlier ones.

    Skillful Seasonal Forecasts of Summer Surface Air Temperature in Western China by Global Seasonal Forecast System Version 5
    Chaofan LI,Riyu LU,Philip E. BETT,Adam A. SCAIFE,Nicola MARTIN
    2018, 35 (8): 955-964.   DOI: 10.1007/s00376-018-7291-7
    Abstract   ( 431 ) HTML   PDF (7161KB) (157)

    Variations of surface air temperature (SAT) are key in affecting the hydrological cycle, ecosystems and agriculture in western China in summer. This study assesses the seasonal forecast skill and reliability of SAT in western China, using the GloSea5 operational forecast system from the UK Met Office. Useful predictions are demonstrated, with considerable skill over most regions of western China. The temporal correlation coefficients of SAT between model predictions and observations are larger than 0.6, in both northwestern China and the Tibetan Plateau. There are two important sources of skill for these predictions in western China: interannual variation of SST in the western Pacific and the SST trend in the tropical Pacific. The tropical SST change in the recent two decades, with a warming in the western Pacific and cooling in the eastern Pacific, which is reproduced well by the forecast system, provides a large contribution to the skill of SAT in northwestern China. Additionally, the interannual variation of SST in the western Pacific gives rise to the reliable prediction of SAT around the Tibetan Plateau. It modulates convection around the Maritime Continent and further modulates the variation of SAT on the Tibetan Plateau via the surrounding circulation. This process is evident irrespective of detrending both in observations and the model predictions, and acts as a source of skill in predictions for the Tibetan Plateau. The predictability and reliability demonstrated in this study is potentially useful for climate services providing early warning of extreme climate events and could imply useful economic benefits.

    Value-added Impact of Geostationary Hyperspectral Infrared Sounders on Local Severe Storm Forecasts——via a Quick Regional OSSE
    Zhenglong LI,Jun LI,Pei WANG,Agnes LIM,Jinlong LI,Timothy J. SCHMIT,Robert ATLAS,Sid-Ahmed BOUKABARA,Ross N. HOFFMAN
    2018, 35 (10): 1217-1230.   DOI: 10.1007/s00376-018-8036-3
    Abstract   ( 407 ) HTML   PDF (3069KB) (148)

    Accurate atmospheric temperature and moisture information with high temporal/spatial resolutions are two of the key parameters needed in regional numerical weather prediction (NWP) models to reliably predict high-impact weather events such as local severe storms (LSSs). High spectral resolution or hyperspectral infrared (HIR) sounders from geostationary orbit (GEO) provide an unprecedented source of near time-continuous, three-dimensional information on the dynamic and thermodynamic atmospheric fields——an important benefit for nowcasting and NWP-based forecasting. In order to demonstrate the value of GEO HIR sounder radiances on LSS forecasts, a quick regional OSSE (Observing System Simulation Experiment) framework has been developed, including high-resolution nature run generation, synthetic observation simulation and validation, and impact study on LSS forecasts. Results show that, on top of the existing LEO (low earth orbit) sounders, a GEO HIR sounder may provide value-added impact [a reduction of 3.56% in normalized root-mean-square difference (RMSD)] on LSS forecasts due to large spatial coverage and high temporal resolution, even though the data are assimilated every 6 h with a thinning of 60 km. Additionally, more frequent assimilations and smaller thinning distances allow more observations to be assimilated, and may further increase the positive impact from a GEO HIR sounder. On the other hand, with denser and more frequent observations assimilated, it becomes more difficult to handle the spatial error correlation in observations and gravity waves due to the limitations of current assimilation and forecast systems (such as a static background error covariance). The peak reduction of 4.6% in normalized RMSD is found when observations are assimilated every 3 h with a thinning distance of 30 km.

    Seasonal Forecasts of the Summer 2016 Yangtze River Basin Rainfall
    Philip E. BETT,Adam A. SCAIFE,Chaofan LI,Chris HEWITT,Nicola GOLDING,Peiqun ZHANG,Nick DUNSTONE,Doug M. SMITH,Hazel E. THORNTON,Riyu LU,Hong-Li REN
    2018, 35 (8): 918-926.   DOI: 10.1007/s00376-018-7210-y
    Abstract   ( 406 ) HTML   PDF (1989KB) (244)

    The Yangtze River has been subject to heavy flooding throughout history, and in recent times severe floods such as those in 1998 have resulted in heavy loss of life and livelihoods. Dams along the river help to manage flood waters, and are important sources of electricity for the region. Being able to forecast high-impact events at long lead times therefore has enormous potential benefit. Recent improvements in seasonal forecasting mean that dynamical climate models can start to be used directly for operational services. The teleconnection from El Niño to Yangtze River basin rainfall meant that the strong El Niño in winter 2015/16 provided a valuable opportunity to test the application of a dynamical forecast system. This paper therefore presents a case study of a real-time seasonal forecast for the Yangtze River basin, building on previous work demonstrating the retrospective skill of such a forecast. A simple forecasting methodology is presented, in which the forecast probabilities are derived from the historical relationship between hindcast and observations. Its performance for 2016 is discussed. The heavy rainfall in the May-June-July period was correctly forecast well in advance. August saw anomalously low rainfall, and the forecasts for the June-July-August period correctly showed closer to average levels. The forecasts contributed to the confidence of decision-makers across the Yangtze River basin. Trials of climate services such as this help to promote appropriate use of seasonal forecasts, and highlight areas for future improvements.

    Influence of Atmospheric Particulate Matter on Ozone in Nanjing, China: Observational Study and Mechanistic Analysis
    Yawei QU,Tijian WANG,Yanfeng CAI,Shekou WANG,Pulong CHEN,Shu LI,Mengmeng LI,Cheng YUAN,Jing WANG,Shaocai XU
    2018, 35 (11): 1381-1395.   DOI: 10.1007/s00376-018-8027-4
    Abstract   ( 394 ) HTML   PDF (5772KB) (139)

    Particulate matter with diameters of 2.5 μm or smaller (PM2.5) and ozone (O3) are major pollutants in the urban atmosphere. PM2.5 can affect O3 by altering the photolysis rate and heterogeneous reactions. However, these two processes and their relative importance remain uncertain. In this paper, with Nanjing in China as the target city, we investigate the characteristics and mechanism of interactions between particles and O3 based on ground observations and numerical modeling. In 2008, the average concentrations of PM2.5 and O3 at Caochangmen station are 64.6 47.4 μg m-3 and 24.6 22.8 ppb, respectively, while at Pukou station they are 94.1 63.4 μg m-3 and 16.9 14.9 ppb. The correlation coefficient between PM2.5 and O3 is -0.46. In order to understand the reaction between PM2.5 and O3, we construct a box model, in which an aerosol optical property model, ultraviolet radiation model, gas phase chemistry model, and heterogeneous chemistry model, are coupled. The model is employed to investigate the relative contribution of the aforementioned two processes, which vary under different particle concentrations, scattering capability and VOCs/NO x ratios (VOCs: volatile organic compounds; NO x: nitric oxide and nitrogen dioxide). Generally, photolysis rate effect can cause a greater O3 reduction when the particle concentrations are higher, while heterogeneous reactions dominate O3 reduction with low-level particle concentrations. Moreover, in typical VOC-sensitive regions, O3 can even be increased by heterogeneous reactions. In Nanjing, both processes lead to O3 reduction, and photolysis rate effect is dominant. Our study underscores the importance of photolysis rate effect and heterogeneous reactions for O3, and such interaction processes should be fully considered in future atmospheric chemistry modeling.

    Probabilistic Automatic Outlier Detection for Surface Air Quality Measurements from the China National Environmental Monitoring Network
    Huangjian WU,Xiao TANG,Zifa WANG,Lin WU,Miaomiao LU,Lianfang WEI,Jiang ZHU
    2018, 35 (12): 1522-1532.   DOI: 10.1007/s00376-018-8067-9
    Abstract   ( 369 ) HTML   PDF (966KB) (80)

    Although quality assurance and quality control procedures are routinely applied in most air quality networks, outliers can still occur due to instrument malfunctions, the influence of harsh environments and the limitation of measuring methods. Such outliers pose challenges for data-powered applications such as data assimilation, statistical analysis of pollution characteristics and ensemble forecasting. Here, a fully automatic outlier detection method was developed based on the probability of residuals, which are the discrepancies between the observed and the estimated concentration values. The estimation can be conducted using filtering——or regressions when appropriate——to discriminate four types of outliers characterized by temporal and spatial inconsistency, instrument-induced low variances, periodic calibration exceptions, and less PM10 than PM2.5 in concentration observations, respectively. This probabilistic method was applied to detect all four types of outliers in hourly surface measurements of six pollutants (PM2.5, PM10, SO2, NO2, CO and O3) from 1436 stations of the China National Environmental Monitoring Network during 2014-16. Among the measurements, 0.65%-5.68% are marked as outliers, with PM10 and CO more prone to outliers. Our method successfully identifies a trend of decreasing outliers from 2014 to 2016, which corresponds to known improvements in the quality assurance and quality control procedures of the China National Environmental Monitoring Network. The outliers can have a significant impact on the annual mean concentrations of PM2.5, with differences exceeding 10 μg m-3 at 66 sites.

    Determination of the Backward Predictability Limit and Its Relationship with the Forward Predictability Limit
    Xuan LI,Ruiqiang DING,Jianping LI
    2019, 36 (6): 669-677.   DOI: 10.1007/s00376-019-8205-z
    Abstract   ( 368 ) HTML   PDF (1653KB) (114)

    In this work, two types of predictability are proposed——forward and backward predictability——and then applied in the nonlinear local Lyapunov exponent approach to the Lorenz63 and Lorenz96 models to quantitatively estimate the local forward and backward predictability limits of states in phase space. The forward predictability mainly focuses on the forward evolution of initial errors superposed on the initial state over time, while the backward predictability is mainly concerned with when the given state can be predicted before this state happens. From the results, there is a negative correlation between the local forward and backward predictability limits. That is, the forward predictability limits are higher when the backward predictability limits are lower, and vice versa. We also find that the sum of forward and backward predictability limits of each state tends to fluctuate around the average value of sums of the forward and backward predictability limits of sufficient states. Furthermore, the average value is constant when the states are sufficient. For different chaotic systems, the average value is dependent on the chaotic systems and more complex chaotic systems get a lower average value. For a single chaotic system, the average value depends on the magnitude of initial perturbations. The average values decrease as the magnitudes of initial perturbations increase.

    Varying Rossby Wave Trains from the Developing to Decaying Period of the Upper Atmospheric Heat Source over the Tibetan Plateau in Boreal Summer
    Chuandong ZHU,Rongcai REN,Guoxiong WU
    2018, 35 (9): 1114-1128.   DOI: 10.1007/s00376-017-7231-y
    Abstract   ( 367 ) HTML   PDF (1390KB) (216)

    This study demonstrates the two different Rossby wave train (RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau (TPUHS) in boreal summer. The results show that the summer TPUHS is dominated by quasi-biweekly variability, particularly from late July to mid-August when the subtropical jet steadily stays to the north of the TP. During the developing period of TPUHS events, the intensifying TPUHS corresponds to an anomalous upper-tropospheric high over the TP, which acts as the main source of a RWT that extends northeastward, via North China, the central Pacific and Alaska, to the northeastern Pacific region. This RWT breaks up while the anomalous high is temporarily replaced by an anomalous low due to the further deepened convective heating around the TPUHS peak. However, this anomalous low, though existing for only three to four days due to the counteracting dynamical effects of the persisting upper/lower divergence/convergence over the TP, acts as a new wave source to connect to an anomalous dynamical high over the Baikal region. Whilst the anomalous low is diminishing rapidly, this Baikal high becomes the main source of a new RWT, which develops eastward over the North Pacific region till around eight days after the TPUHS peak. Nevertheless, the anomaly centers along this decaying-TPUHS-related RWT mostly appear much weaker than those along the previous RWT. Therefore, their impacts on circulation and weather differ considerably from the developing to the decaying period of TPUHS events.

    Aerosol Data Assimilation Using Data from Fengyun-3A and MODIS: Application to a Dust Storm over East Asia in 2011
    Xiaoli XIA,Jinzhong MIN,Feifei SHEN,Yuanbing WANG,Chun YANG
    2019, 36 (1): 1-14.   DOI: 10.1007/s00376-018-8075-9
    Abstract   ( 333 ) HTML   PDF (12194KB) (132)

    Aerosol optical depth (AOD) is the most basic parameter that describes the optical properties of atmospheric aerosols, and it can be used to indicate aerosol content. In this study, we assimilated AOD data from the Fengyun-3A (FY-3A) and MODIS meteorological satellite using the Gridpoint Statistical Interpolation three-dimensional variational data assimilation system. Experiments were conducted for a dust storm over East Asia in April 2011. Each 0600 UTC analysis initialized a 24-h Weather Research and Forecasting with Chemistry model forecast. The results generally showed that the assimilation of satellite AOD observational data can significantly improve model aerosol mass prediction skills. The AOD distribution of the analysis field was closer to the observations of the satellite after assimilation of satellite AOD data. In addition, the analysis resulting from the experiment assimilating both FY-3A/MERSI (Medium-resolution Spectral Imager) AOD data and MODIS AOD data had closer agreement with the ground-based values than the individual assimilation of the two datasets for the dust storm over East Asia. These results suggest that the Chinese FY-3A satellite aerosol products can be effectively applied to numerical models and dust weather analysis.

    Influence of Low-frequency Solar Forcing on the East Asian Winter Monsoon Based on HadCM3 and Observations
    Jiapeng MIAO,Tao WANG,Huijun WANG,Yongqi GAO
    2018, 35 (9): 1205-1215.   DOI: 10.1007/s00376-018-7229-0
    Abstract   ( 331 ) HTML   PDF (2616KB) (157)

    In this study, we investigate the influence of low-frequency solar forcing on the East Asian winter monsoon (EAWM) by analyzing a four-member ensemble of 600-year simulations performed with HadCM3 (Hadley Centre Coupled Model, version 3). We find that the EAWM is strengthened when total solar irradiance (TSI) increases on the multidecadal time scale. The model results indicate that positive TSI anomalies can result in the weakening of Atlantic meridional overturning circulation, causing negative sea surface temperature (SST) anomalies in the North Atlantic. Especially for the subtropical North Atlantic, the negative SST anomalies can excite an anomalous Rossby wave train that moves from the subtropical North Atlantic to the Greenland Sea and finally to Siberia. In this process, the positive sea-ice feedback over the Greenland Sea further enhances the Rossby wave. The wave train can reach the Siberian region, and strengthen the Siberian high. As a result, low-level East Asian winter circulation is strengthened and the surface air temperature in East Asia decreases. Overall, when solar forcing is stronger on the multidecadal time scale, the EAWM is typically stronger than normal. Finally, a similar linkage can be observed between the EAWM and solar forcing during the period 1850-1970.

    Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe River Basin in China: Noah and Noah-MP Assessment
    Fuqiang YANG,Li DAN,Jing PENG,Xiujing YANG,Yueyue LI,Dongdong GAO
    2019, 36 (1): 79-92.   DOI: 10.1007/s00376-018-8035-4
    Abstract   ( 329 ) HTML   PDF (3363KB) (58)

    The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe River Basin (HRB) using in-situ observations. The simulated soil temperature and moisture in the two land surface models (LSMs) is consistent with the observation, especially in the rainy season. The models reproduce the mean values and seasonality of the energy fluxes of the croplands, despite the obvious underestimated total evaporation. Noah shows the lower deep soil temperature. The net radiation is well simulated for the diurnal time scale. The daytime latent heat fluxes are always underestimated, while the sensible heat fluxes are overestimated to some degree. Compared with Noah, Noah-MP has improved daily average soil heat flux with diurnal variations. Generally, Noah-MP performs fairly well for different landscapes of the HRB. The simulated cold bias in soil temperature is possibly linked with the parameterized partition of the energy into surface fluxes. Thus, further improvement of these LSMs remains a major challenge.

    Causes of the Extreme Hot Midsummer in Central and South China during 2017: Role of the Western Tropical Pacific Warming
    Ruidan CHEN, Zhiping WEN, Riyu LU, Chunzai WANG
    2019, 36 (5): 465-478.   DOI: 10.1007/s00376-018-8177-4
    Abstract   ( 323 ) HTML   PDF (12890KB) (215)

    This study investigates why an extreme hot midsummer occurred in Central and South China (CSC) during 2017. It is shown that the western North Pacific subtropical high (WNPSH) was abnormally intensified and westward-extending, resulting in anomalous high pressure and consequent extreme heat over CSC. The abnormal WNPSH was favored by the warming of the western tropical Pacific (WTP), which was unrelated to ENSO and manifested its own individual effect. The WTP warming enhanced the convection in-situ and led to anomalous high pressure over CSC via a local meridional circulation. The influence of the WTP was confirmed by CAM4 model experiments. A comparison between the 2017 midsummer and 2010 midsummer (with a stronger WNPSH but weaker extreme heat) indicated that the influence of the WNPSH on extreme heat can be modulated by the associated precipitation in the northwestern flank.

    The role of the WTP was verified by regression analyses on the interannual variation of the WTP sea surface temperature anomaly (SSTA). On the other hand, the WTP has undergone prominent warming during the past few decades, resulting from decadal to long-term changes and favoring extreme warm conditions. Through a mechanism similar to the interannual variation, the decadal to long-term changes have reinforced the influence of WTP warming on the temperature over CSC, contributing to the more frequent hot midsummers recently. It is estimated that more than 50% of the temperature anomaly over CSC in the 2017 midsummer was due to the WTP warming, and 40% was related to the decadal to long-term changes of the WTP SSTA.

    Interannual Variability of Late-spring Circulation and Diabatic Heating over the Tibetan Plateau Associated with Indian Ocean Forcing
    Yu ZHAO,Anmin DUAN,Guoxiong WU
    2018, 35 (8): 927-941.   DOI: 10.1007/s00376-018-7217-4
    Abstract   ( 312 ) HTML   PDF (14426KB) (210)

    The thermal forcing of the Tibetan Plateau (TP) during boreal spring, which involves surface sensible heating, latent heating released by convection and radiation flux heat, is critical for the seasonal and subseasonal variation of the East Asian summer monsoon. Distinct from the situation in March and April when the TP thermal forcing is modulated by the sea surface temperature anomaly (SSTA) in the North Atlantic, the present study shows that it is altered mainly by the SSTA in the Indian Ocean Basin Mode (IOBM) in May, according to in-situ observations over the TP and MERRA reanalysis data. In the positive phase of the IOBM, a local Hadley circulation is enhanced, with its ascending branch over the southwestern Indian Ocean and a descending one over the southeastern TP, leading to suppressed precipitation and weaker latent heat over the eastern TP. Meanwhile, stronger westerly flow and surface sensible heating emerges over much of the TP, along with slight variations in local net radiation flux due to cancellation between its components. The opposite trends occur in the negative phase of the IOBM. Moreover, the main associated physical processes can be validated by a series of sensitivity experiments based on an atmospheric general circulation model, FAMIL. Therefore, rather than influenced by the remote SSTAs of the northern Atlantic in the early spring, the thermal forcing of the TP is altered by the Indian Ocean SSTA in the late spring on an interannual timescale.

    Locating Parent Lightning Strokes of Sprites Observed over a Mesoscale Convective System in Shandong Province, China
    Anjing HUANG,Gaopeng LU,Hongbo ZHANG,Feifan LIU,Yanfeng FAN,Baoyou ZHU,Jing YANG,Zhichao WANG
    2018, 35 (11): 1396-1414.   DOI: 10.1007/s00376-018-7306-4
    Abstract   ( 309 ) HTML   PDF (28709KB) (83)

    In this paper, we report the location results for the parent lightning strokes of more than 30 red sprites observed over an asymmetric mesoscale convective system (MCS) on 30 July 2015 in Shandong Province, China, with a long-baseline lightning location network of very-low-frequency/low-frequency magnetic field sensors. The results show that almost all of these cloud-to-ground (CG) strokes are produced during the mature stage of the MCS, and are predominantly located in the trailing stratiform region, which is similar to analyses of sprite-productive MCSs in North America and Europe. Comparison between the location results for the sprite-producing CG strokes and those provided by the World Wide Lightning Location Network (WWLLN) indicates that the location accuracy of WWLLN for intense CG strokes in Shandong Province is typically within 10 km, which is consistent with the result based on analysis of 2838 sprite-producing CG strokes in the continental United States. Also, we analyze two cases where some minor lightning discharges in the parent flash of sprites can also be located, providing an approach to confine the thundercloud region tapped by the sprite-producing CG strokes.

    Nocturnal Low-level Winds and Their Impacts on Particulate Matter over the Beijing Area
    Yong CHEN,Junling AN,Yele SUN,Xiquan WANG,Yu QU,Jingwei ZHANG,Zifa WANG,Jing DUAN
    2018, 35 (12): 1455-1468.   DOI: 10.1007/s00376-018-8022-9
    Abstract   ( 308 ) HTML   PDF (3153KB) (108)

    Three-month wind profiles, 260 m PM1 concentrations [i.e., particulate matter (PM) with an aerodynamic diameter ≤ 1 μm], and carrier-to-noise ratio data at two Beijing sites 55 km apart (urban and suburban) were collected to analyze the characteristics of low-level nocturnal wind and PM in autumn and winter. Three mountain-plain wind events with wind shear were selected for analysis. The measurements indicated that the maximum wind speeds of the northerly weak low-level jet (LLJ) below 320 m at the suburban site were weaker than those at the urban site, and the LLJ heights and depths at the suburban site were lower than those at the urban site. The nocturnal 140 m mean vertical velocities and the variations in vertical velocity at the urban site were larger than those at the suburban site. A nocturnal breeze with a weak LLJ of ~3 m s-1 noticeably offset nocturnal PM transport due to southerly flow and convergence within the northern urban area of Beijing. Characteristics of the nocturnal LLJ, such as start-up time, structure, intensity, and duration, were important factors in determining the decrease in the nocturnal horizontal range and site-based low-level variations in PM.

    Impact of Global Oceanic Warming on Winter Eurasian Climate
    Xin HAO,Shengping HE,Tingting HAN,Huijun WANG
    2018, 35 (10): 1254-1264.   DOI: 10.1007/s00376-018-7216-5
    Abstract   ( 298 ) HTML   PDF (3343KB) (151)

    In the 20th century, Eurasian warming was observed and was closely related to global oceanic warming (the first leading rotated empirical orthogonal function of annual mean sea surface temperature over the period 1901-2004). Here, large-scale patterns of covariability between global oceanic warming and circulation anomalies are investigated based on NCEP-NCAR reanalysis data. In winter, certain dominant features are found, such as a positive pattern of the North Atlantic Oscillation (NAO), low-pressure anomalies over northern Eurasia, and a weakened East Asian trough. Numerical experiments with the CAM3.5, CCM3 and GFDL models are used to explore the contribution of global oceanic warming to the winter Eurasian climate. Results show that a positive NAO anomaly, low-pressure anomalies in northern Eurasia, and a weaker-than-normal East Asian trough are induced by global oceanic warming. Consequently, there are warmer winters in Europe and the northern part of East Asia. However, the Eurasian climate changes differ slightly among the three models. Eddy forcing and convective heating from those models may be the reason for the different responses of Eurasian climate.

    Collating Historic Weather Observations for the East Asian Region: Challenges, Solutions, and Reanalyses
    2018, 35 (8): 899-904.   DOI: 10.1007/s00376-017-7259-z
    Abstract   ( 288 ) HTML   PDF (2720KB) (139)
    Impact of the Horizontal Heat Flux in the Mixed Layer on an Extreme Heat Event in North China: A Case Study
    Ying NA,Riyu LU,Bing LU,Min CHEN,Shiguang MIAO
    2019, 36 (2): 133-142.   DOI: 10.1007/s00376-018-8133-3
    Abstract   ( 271 ) HTML   PDF (6105KB) (126)

    Extreme heat over the North China Plain is typically induced by anomalous descending flows associated with anticyclonic circulation anomalies. However, an extreme heat event that happened in the North China Plain region on 12-13 July 2015, with maximum temperature higher than 40°C at some stations, was characterized by only a weak simultaneous appearance of an anomalous anticyclone and descending flow, suggesting that some other factor(s) may have induced this heat event. In this study, we used the forecast data produced by the Beijing Rapid Updated Cycling operational forecast system, which predicted the heat event well, to investigate the formation mechanism of this extreme heat event. We calculated the cumulative heat in the mixed-layer air column of North China to represent the change in surface air temperature. The cumulative heat was composed of sensible heat flux from the ground surface and the horizontal heat flux convergence. The results indicated that the horizontal heat flux in the mixed layer played a crucial role in the temporal and spatial distribution of high temperatures. The horizontal heat flux was found to be induced by distinct distributions of air temperatures and horizontal winds at low levels during the two days, implying a complexity of the low-level atmosphere in causing the extreme heat.

    Two Types of Flash Drought and Their Connections with Seasonal Drought
    Linying WANG,Xing YUAN
    2018, 35 (12): 1478-1490.   DOI: 10.1007/s00376-018-8047-0
    Abstract   ( 264 ) HTML   PDF (44481KB) (89)

    Flash drought is a rapidly intensifying drought with abnormally high temperature, which has greatly threatened crop yields and water supply, and aroused wide public concern in a warming climate. However, the preferable hydrometeorological conditions for flash drought and its association with conventional drought at longer time scales remain unclear. Here, we investigate two types of flash drought over China: one is high-temperature driven (Type I), while the other is water-deficit driven (Type II). Results show that the frequencies of the two types of flash drought averaged over China during the growing season are comparable. Type I flash drought tends to occur over southern China, where moisture supply is sufficient, while Type II is more likely to occur over semi-arid regions such as northern China. Both types of flash drought increase significantly (p<0.01) during 1979-2010, with a doubled rise in Type I as compared with Type II. Composite analysis shows that high temperature quickly increases evapotranspiration (ET) and reduces soil moisture from two pentads before the onset of Type I flash drought. In contrast, there are larger soil moisture deficits two pentads before the onset of Type II flash drought, leading to a decrease in ET and increase in temperature. For flash drought associated with seasonal drought, there is a greater likelihood of occurrence during the onset and recovery phases of seasonal drought, suggesting perfect conditions for flash drought during transition periods. This study provides a basis for the early warning of flash drought by connecting multiscale drought phenomena.

    Warm-Season Diurnal Variations of Total, Stratiform, Convective, and Extreme Hourly Precipitation over Central and Eastern China
    Yongguang ZHENG,Yanduo GONG,Jiong CHEN,Fuyou TIAN
    2019, 36 (2): 143-159.   DOI: 10.1007/s00376-018-7307-3
    Abstract   ( 261 ) HTML   PDF (19696KB) (88)

    Diurnal variations in amount, frequency and intensity of warm-season hourly precipitation (HP) at seven levels, which are defined as HP ≥ 0.1, 0.5, 1, 5, 10, 20 and 50 mm, are revealed based on no less than 30 years of hourly rain-gauge observations at national stations over central and eastern China (CEC). This study investigates the variations, relationships, differences and similarities of total, stratiform, convective and extreme HP over the entire CEC and various subregions. Results indicate that the variations in the amount and frequency of HP at the seven levels over the entire CEC all display a bimodal feature. For various regions, the variations of total HP mostly feature two peaks, while convective HP mainly occurs in the late afternoon and determines the diurnal variation of total HP intensity. On the basis of the primary peak time periods of HP frequency at all levels over different subregions, the variations can be classified into three main categories: late-afternoon primary peak, nocturnal primary peak, and time-shifting primary peak. However, the variations over some coastal regions like the Liaodong Peninsula, the Shandong Peninsula, and the coastal regions of Guangdong, distinctly differ from those over their corresponding larger regions. Overall, the normalized diurnal variation amplitude of amount and frequency increases with the increasing HP intensity; convective precipitation can be represented by HP ≥ 10 mm; and the intensity of HP ≥ 50 mm is slightly larger during the nighttime than during the daytime over the entire CEC. In northern China, diurnal variation in HP ≥ 5 mm can represent well that in convective precipitation.

    Source Contributions to PM2.5 under Unfavorable Weather Conditions in Guangzhou City, China
    Nan WANG,Zhenhao LING,Xuejiao DENG,Tao DENG,Xiaopu LYU,Tingyuan LI,Xiaorong GAO,Xi CHEN
    2018, 35 (9): 1145-1159.   DOI: 10.1007/s00376-018-7212-9
    Abstract   ( 258 ) HTML   PDF (5517KB) (126)

    Historical haze episodes (2013-16) in Guangzhou were examined and classified according to synoptic weather systems. Four types of weather systems were found to be unfavorable, among which "foreside of a cold front" (FC) and "sea high pressure" (SP) were the most frequent (>75% of the total). Targeted case studies were conducted based on an FC-affected event and an SP-affected event with the aim of understanding the characteristics of the contributions of source regions to fine particulate matter (PM2.5) in Guangzhou. Four kinds of contributions——namely, emissions outside Guangdong Province (super-region), emissions from the Pearl River Delta region (PRD region), emissions from Guangzhou-Foshan-Shenzhen (GFS region), and emissions from Guangzhou (local)——were investigated using the Weather Research and Forecasting-Community Multiscale Air Quality model. The results showed that the source region contribution differed with different weather systems. SP was a stagnant weather condition, and the source region contribution ratio showed that the local region was a major contributor (37%), while the PRD region, GFS region and the super-region only contributed 8%, 2.8% and 7%, respectively, to PM2.5 concentrations. By contrast, FC favored regional transport. The super-region became noticeable, contributing 34.8%, while the local region decreased to 12%. A simple method was proposed to quantify the relative impact of meteorology and emissions. Meteorology had a 35% impact, compared with an impact of -18% for emissions, when comparing the FC-affected event with that of the SP. The results from this study can provide guidance to policymakers for the implementation of effective control strategies.

    Observational Study on the Supercooled Fog Droplet Spectrum Distribution and Icing Accumulation Mechanism in Lushan, Southeast China
    Tianshu WANG,Shengjie NIU,Jingjing Lü,Yue ZHOU
    2019, 36 (1): 29-40.   DOI: 10.1007/s00376-018-8017-6
    Abstract   ( 258 ) HTML   PDF (824KB) (55)

    A fog monitor, hotplate total precipitation sensor, weather identifier and visibility sensor, ultrasonic wind speed meter, an icing gradient observation frame, and an automated weather station were involved in the observations at the Lushan Meteorological Bureau of Jiangxi Province, China. In this study, for the icing process under a cold surge from 20-25 January 2016, the duration, frequency, and spectrum distribution of agglomerate fog were analyzed. The effects of rain, snow, and supercooled fog on icing growth were studied and the icing and meteorological conditions at two heights (10 m and 1.5 m) were compared. There were 218 agglomerate fogs in this icing process, of which agglomerate fogs with durations less than and greater than 10 min accounted for 91.3% and 8.7%, respectively. The average time interval was 10.3 min. The fog droplet number concentration for sizes 2-15 μm and 30-50 μm increased during rainfall, and that for 2-27 μm decreased during snowfall. Icing grew rapidly (1.3 mm h-1) in the freezing rain phase but slowly (0.1 mm h-1) during the dry snow phase. Intensive supercooled fog, lower temperatures and increased wind speed all favored icing growth during dry snow (0.5 mm h-1). There were significant differences in the thickness, duration, density, and growth mechanism of icing at the heights of 10 m and 1.5 m. Differences in temperature and wind speed between the two heights were the main reasons for the differences in icing conditions, which indicated that icing was strongly affected by height.

    Modulation of the Intensity of Nascent Tibetan Plateau Vortices by Atmospheric Quasi-Biweekly Oscillation
    Lun LI,Renhe ZHANG,Min WEN,Jianping DUAN
    2018, 35 (11): 1347-1361.   DOI: 10.1007/s00376-018-8057-y
    Abstract   ( 256 ) HTML   PDF (2097KB) (84)

    The modulation of the intensity of nascent Tibetan Plateau vortices (ITPV) by atmospheric quasi-biweekly oscillation (QBWO) is investigated based on final operational global analysis data from the National Centers for Environmental Prediction. The spatial and temporal distributions of the ITPV show distinct features of 10-20-day QBWO. The average ITPV is much higher in the positive phases than in the negative phases, and the number of strong TPVs is much larger in the former, with a peak that appears in phase 3. In addition, the maximum centers of the ITPV stretch eastward in the positive phases, indicating periodic variations in the locations where strong TPVs are generated. The large-scale circulations and related thermodynamic fields are discussed to investigate the mechanism by which the 10-20-day QBWO modulates the ITPV. The atmospheric circulations and heating fields of the 10-20-day QBWO have a major impact on the ITPV. In the positive QBWO phases, the anomalous convergence at 500 hPa and divergence at 200 hPa are conducive to ascending motion. In addition, the convergence centers of the water vapor and the atmospheric unstable stratification are found in the positive QBWO phases and move eastward. Correspondingly, condensational latent heat is released and shifts eastward with the heating centers located at 400 hPa, which favors a higher ITPV by depressing the isobaric surface at 500 hPa. All of the dynamic and thermodynamic conditions in the positive QBWO phases are conducive to the generation of stronger TPVs and their eastward expansion.

    A 31-year Global Diurnal Sea Surface Temperature Dataset Created by an Ocean Mixed-Layer Model
    Xiang LI, Tiejun LING, Yunfei ZHANG, Qian ZHOU
    2018, 35 (12): 1443-1454.   DOI: 10.1007/s00376-018-8016-7
    Abstract   ( 255 ) HTML   PDF (16275KB) (116)

    A dataset of hourly sea surface temperature (SST) from the period 1 January 1982 to 31 December 2012, and covering the global ocean at a resolution of 0.3°× 0.3°, was created using a validated ocean mixed-layer model (MLSST). The model inputs were heat flux and surface wind speed obtained from the Coupled Forecast System Reanalysis dataset. Comparisons with in-situ data from the Tropical Atmosphere Ocean array and the National Data Buoy Center showed that the MLSST fitted very well with observations, with a mean bias of 0.07°C, and a root-mean-square error (RMSE) and correlation coefficient of 0.37°C and 0.98, respectively. Also, the MLSST fields successfully reproduced the diurnal cycle of SST in the in-situ data, with a mean bias of -0.005°C and RMSE of 0.26°C. The 31-year climatology revealed that the diurnal range was small across most regions, with higher values in the eastern and western equatorial Pacific, northern Indian Ocean, western Central America, northwestern Australia, and several coastal regions. Significant seasonal variation of diurnal SST existed in all basins. In the Atlantic and Pacific basins, this seasonal pattern was oriented north-south, following the variation in solar insolation, whereas in the Indian basin it was dominated by monsoonal variability. At the interannual scale, the results highlighted the relationship between diurnal and interannual variations of SST, and revealed that the diurnal warming in the central equatorial Pacific could be a potential climatic indicator for ENSO prediction.

    Predictable and Unpredictable Components of the Summer East Asia-Pacific Teleconnection Pattern
    Xiaozhen LIN,Chaofan LI,Riyu LU,Adam A. SCAIFE
    2018, 35 (11): 1372-1380.   DOI: 10.1007/s00376-018-7305-5
    Abstract   ( 242 ) HTML   PDF (1146KB) (75)

    The East Asia-Pacific (EAP) teleconnection pattern is the dominant mode of circulation variability during boreal summer over the western North Pacific and East Asia, extending from the tropics to high latitudes. However, much of this pattern is absent in multi-model ensemble mean forecasts, characterized by very weak circulation anomalies in the mid and high latitudes. This study focuses on the absence of the EAP pattern in the extratropics, using state-of-the-art coupled seasonal forecast systems. The results indicate that the extratropical circulation is much less predictable, and lies in the large spread among different ensemble members, implying a large contribution from atmospheric internal variability. However, the tropical-mid-latitude teleconnections are also relatively weaker in models than observations, which also contributes to the failure of prediction of the extratropical circulation. Further results indicate that the extratropical EAP pattern varies closely with the anomalous surface temperatures in eastern Russia, which also show low predictability. This unpredictable circulation-surface temperature connection associated with the EAP pattern can also modulate the East Asian rainband.

    2018 Continues Record Global Ocean Warming
    Lijing CHENG,Jiang ZHU,John ABRAHAM,Kevin E. TRENBERTH,John T. FASULLO,Bin ZHANG,Fujiang YU,Liying WAN,Xingrong CHEN,Xiangzhou SONG
    2019, 36 (3): 249-252.   DOI: 10.1007/s00376-019-8276-x
    Abstract   ( 242 ) HTML   PDF (1925KB) (123)

    A Three-dimensional Wave Activity Flux of Inertia-Gravity Waves and Its Application to a Rainstorm Event
    Lu LIU,Lingkun RAN,Shouting GAO
    2019, 36 (2): 206-218.   DOI: 10.1007/s00376-018-8018-5
    Abstract   ( 231 ) HTML   PDF (12018KB) (73)

    A three-dimensional transformed Eulerian-mean (3D TEM) equation under a non-hydrostatic and non-geostrophic assumption is deduced in this study. The vertical component of the 3D wave activity flux deduced here is the primary difference from previous studies, which is suitable to mesoscale systems. Using the 3D TEM equation, the energy propagation of the inertia-gravity waves and how the generation and dissipation of the inertia-gravity waves drive the mean flow can be examined. During the mature stage of a heavy precipitation event, the maximum of the Eliassen-Palm (EP) flux divergence is primarily concentrated at the height of 10-14 km, where the energy of the inertia-gravity waves propagates forward (eastward) and upward. Examining the contribution of each term of the 3D TEM equation shows that the EP flux divergence is the primary contributor to the mean flow tendency. The EP flux divergence decelerates the zonal wind above and below the high-level jet at the height of 10 km and 15 km, and accelerates the high-level jet at the height of 12-14 km. This structure enhances the vertical wind shear of the environment and promotes the development of the rainstorm.

    Assessment and Assimilation of FY-3 Humidity Sounders and Imager in the UK Met Office Global Model
    Fabien CARMINATI,Brett CANDY,William BELL,Nigel ATKINSON
    2018, 35 (8): 942-954.   DOI: 10.1007/s00376-018-7266-8
    Abstract   ( 226 ) HTML   PDF (7250KB) (125)

    China's FengYun 3 (FY-3) polar orbiting satellites are set to become an important source of observational data for numerical weather prediction (NWP), atmospheric reanalyses, and climate monitoring studies over the next two decades. As part of the Climate Science for Service Partnership China (CSSP China) program, FY-3B Microwave Humidity Sounder 1 (MWHS-1) and FY-3C MWHS-2 observations have been thoroughly assessed and prepared for operational assimilation. This represents the first time observations from China's polar orbiting satellites have been used in the UK's global NWP model. Since 2016, continuous data quality monitoring has shown occasional bias changes found to be correlated to changes in the energy supply scheme regulating the platform heating system and other transient anomalies. Nonetheless, MWHS-1 and MWHS-2 significantly contribute to the 24-h forecast error reduction by 0.3% and 0.6%, respectively, and the combination of both instruments is shown to improve the fit to the model background of independent sounders by up to 1%. The observations from the Microwave Radiation Imager (MWRI) also are a potentially significant source of benefits for NWP models, but a solar-dependent bias observed in the instrument half-orbits has prevented their assimilation. This paper presents the bases of a correction scheme developed at the Met Office for the purpose of a future assimilation of MWRI data.

    Atmospheric Response to Mesoscale Ocean Eddies over the South China Sea
    Haoya LIU,Weibiao LI,Shumin CHEN,Rong FANG,Zhuo LI
    2018, 35 (9): 1189-1204.   DOI: 10.1007/s00376-018-7175-x
    Abstract   ( 219 ) HTML   PDF (13603KB) (124)

    The South China Sea (SCS) is an eddy-active area. Composite analyses based on 438 mesoscale ocean eddies during 2000-2012 revealed the status of the atmospheric boundary layer is influenced remarkably by such eddies. The results showed cold-core cyclonic (warm-core anticyclonic) eddies tend to cool (warm) the overlying atmosphere and cause surface winds to decelerate (accelerate). More than 5% of the total variance of turbulent heat fluxes, surface wind speed and evaporation rate are induced by mesoscale eddies. Furthermore, mesoscale eddies locally affect the columnar water vapor, cloud liquid water, and rain rate. Dynamical analyses indicated that both variations of atmospheric boundary layer stability and sea level pressure are responsible for atmospheric anomalies over mesoscale eddies. To reveal further details about the mechanisms of atmospheric responses to mesoscale eddies, atmospheric manifestations over a pair of cold and warm eddies in the southwestern SCS were simulated. Eddy-induced heat flux anomalies lead to changes in atmospheric stability. Thus, anomalous turbulence kinetic energy and friction velocity arise over the eddy dipole, which reduce (enhance) the vertical momentum transport over the cold (warm) eddy, resulting in the decrease (increase) of sea surface wind. Diagnoses of the model's momentum balance suggested that wind speed anomalies directly over the eddy dipole are dominated by vertical mixing terms within the atmospheric boundary layer, while wind anomalies on the edges of eddies are produced by atmospheric pressure gradient forces and atmospheric horizontal advection terms.

  • ISSN 0256-1530
  • CN 11-1925/04
  • 京ICP备14024088号
  • Tel:86-10-82995054,86-10-82995055
  • Fax:86-10-82995053
  • Zip/Postal Code:100029
  • E-mail: aas@mail.iap.ac.cn