• Adv. Atmos. Sci.  2018, Vol. 35 Issue (9): 1137-1144    DOI: 10.1007/s00376-018-7195-6
    Comparison of Different Generation Mechanisms of Free Convection between Two Stations on the Tibetan Plateau
    Lang ZHANG1, 2, Yaoming MA1, 2, 3(), Weiqiang MA1, 2, 3, Binbin WANG1
    1Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
    3CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
    Abstract
    Abstract  

    Based on high-quality data from eddy covariance measurements at the Qomolangma Monitoring and Research Station for Atmosphere and Environment (QOMS) and the Southeast Tibet Monitoring and Research Station for Environment (SETS), near-ground free convection conditions (FCCs) and their characteristics are investigated. At QOMS, strong thermal effects accompanied by lower wind speeds can easily trigger the occurrence of FCCs. The change of circulation from prevailing katabatic glacier winds to prevailing upslope winds and the oscillation of upslope winds due to cloud cover are the two main causes of decreases in wind speed at QOMS. The analysis of results from SETS shows that the most important trigger mechanism of FCCs is strong solar heating. Turbulence structural analysis using wavelet transform indicates that lower-frequency turbulence near the ground emerges from the detected FCCs both at QOMS and at SETS. It should be noted that the heterogeneous underlying surface at SETS creates large-scale turbulence during periods without the occurrence of FCCs. Regarding datasets of all seasons, the distribution of FCCs presents different characteristics during monsoonal and non-monsoonal periods.

    Keywords free convection conditions      eddy covariance      complex terrain      Tibetan Plateau     
    Just Accepted Date: 28 March 2018   Issue Date: 20 June 2018
    Service
    E-mail this article
    E-mail Alert
    RSS
    Articles by authors
    Lang ZHANG
    Yaoming MA
    Weiqiang MA
    Binbin WANG
    Cite this article:   
    Lang ZHANG,Yaoming MA,Weiqiang MA, et al. Comparison of Different Generation Mechanisms of Free Convection between Two Stations on the Tibetan Plateau[J]. Adv. Atmos. Sci., 2018, 35(9): 1137 -1144 .
    URL:  
    http://159.226.119.58/aas/EN/10.1007/s00376-018-7195-6     OR     
    http://159.226.119.58/aas/EN/Y2018/V35/I9/1137
    References
    1  
    2  
    3  
    4  
    5  
    6  
    7  
    8  
    9  
    10  
    11  
    12  
    13  
    14  
    15  
    16  
    Mauder M.,T. Foken, 2011: Documentation and instruction manual of the eddy-covariance software package TK3. Arbeitsergebnisse, Nr.46., Universitt Bayreuth, Bayreuth.
    17  
    18  
    Raabe A.,1983: On the relation between the drag coefficient and fetch above the sea in the case of off-shore wind in the near shore zone. Z. Meteor., 33, 363- 367.
    19  
    20  
    21  
    Stull R. B.,1988: An Introduction to Boundary Layer Meteorology. Dordrecht: Kluwer Academic Publishers.
    22  
    23  
    24  
    25  
    26  
    27  
    28  
    Related
    [1] Chuandong ZHU,Rongcai REN,Guoxiong WU. Varying Rossby Wave Trains from the Developing to Decaying Period of the Upper Atmospheric Heat Source over the Tibetan Plateau in Boreal Summer[J]. Adv. Atmos. Sci., 2018, 35(9): 1114 -1128 .
    [2] Yu ZHAO,Anmin DUAN,Guoxiong WU. Interannual Variability of Late-spring Circulation and Diabatic Heating over the Tibetan Plateau Associated with Indian Ocean Forcing[J]. Adv. Atmos. Sci., 2018, 35(8): 927 -941 .
    [3] Julia CURIO,Yongren CHEN,Reinhard SCHIEMANN,Andrew G. TURNER,Kai Chi WONG,Kevin HODGES,Yueqing LI. Comparison of a Manual and an Automated Tracking Method for Tibetan Plateau Vortices[J]. Adv. Atmos. Sci., 2018, 35(8): 965 -980 .
    [4] Kai Chi WONG,Senfeng LIU,Andrew G. TURNER,Reinhard K. SCHIEMANN. Different Asian Monsoon Rainfall Responses to Idealized Orography Sensitivity Experiments in the HadGEM3-GA6 and FGOALS-FAMIL Global Climate Models[J]. Adv. Atmos. Sci., 2018, 35(8): 1049 -1062 .
    [5] Yahao WU,Liping LIU. Statistical Characteristics of Raindrop Size Distribution in the Tibetan Plateau and Southern China[J]. Adv. Atmos. Sci., 2017, 34(6): 727 -736 .
    [6] Fangfang HUANG,Weiqiang MA,Binbin WANG,Zeyong HU,Yaoming MA,Genhou SUN,Zhipeng XIE,Yun LIN. Air Temperature Estimation with MODIS Data over the Northern Tibetan Plateau[J]. Adv. Atmos. Sci., 2017, 34(5): 650 -662 .
    [7] Liping LIU,Jiafeng ZHENG,Jingya WU. A Ka-band Solid-state Transmitter Cloud Radar and Data Merging Algorithm for Its Measurements[J]. Adv. Atmos. Sci., 2017, 34(4): 545 -558 .
    [8] Anmin DUAN,Ruizao SUN,Jinhai HE. Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land-Air-Sea Interaction Perspective[J]. Adv. Atmos. Sci., 2017, 34(2): 157 -168 .
    [9] Yang YANG,Rongcai REN. On the Contrasting Decadal Changes of Diurnal Surface Temperature Range between the Tibetan Plateau and Southeastern China during the 1980s-2000s[J]. Adv. Atmos. Sci., 2017, 34(2): 181 -198 .
    [10] Xiaolei CHEN, Yimin LIU, Guoxiong WU. Understanding the Surface Temperature Cold Bias in CMIP5 AGCMs over the Tibetan Plateau[J]. Adv. Atmos. Sci., 2017, 34(12): 1447 -1460 .
    [11] Guoxiong WU,Bian HE,Anmin DUAN,Yimin LIU,Wei YU. Formation and Variation of the Atmospheric Heat Source over the Tibetan Plateau and Its Climate Effects[J]. Adv. Atmos. Sci., 2017, 34(10): 1169 -1184 .
    [12] Lihua ZHU,Gang HUANG,Guangzhou FAN,Xia QU,Guijie ZHAO,Wei HUA. Evolution of Surface Sensible Heat over the Tibetan Plateau Under the Recent Global Warming Hiatus[J]. Adv. Atmos. Sci., 2017, 34(10): 1249 -1262 .
    [13] Ngar-Cheung LAU. The Pioneering Works of Professor Duzheng YE on Atmospheric Dispersion, Tibetan Plateau Meteorology, and Air-Sea Interaction[J]. Adv. Atmos. Sci., 2017, 34(10): 1137 -1149 .
    [14] WANG Leidi,LÜ Daren,HE Qing. The Impact of Surface Properties on Downward Surface Shortwave Radiation over the Tibetan Plateau[J]. Adv. Atmos. Sci., 2015, 32(6): 759 -771 .
    [15] YOU Wei,ZANG Zengliang,PAN Xiaobin,ZHANG Lifeng,LI Yi. Statistical Analysis of Thunderstorms on the Eastern Tibetan Plateau Based on Modified Thunderstorm Indices[J]. Adv. Atmos. Sci., 2015, 32(4): 515 -527 .