• Adv. Atmos. Sci.  2018, Vol. 35 Issue (9): 1114-1128    DOI: 10.1007/s00376-017-7231-y
    Varying Rossby Wave Trains from the Developing to Decaying Period of the Upper Atmospheric Heat Source over the Tibetan Plateau in Boreal Summer
    Chuandong ZHU1, 3, Rongcai REN1, 2(), Guoxiong WU1, 3
    1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters and KLME, Nanjing University of Information Science and Technology, Nanjing 210044, China
    3University of Chinese Academy of Sciences, Beijing 100049, China
    Abstract
    Abstract  

    This study demonstrates the two different Rossby wave train (RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau (TPUHS) in boreal summer. The results show that the summer TPUHS is dominated by quasi-biweekly variability, particularly from late July to mid-August when the subtropical jet steadily stays to the north of the TP. During the developing period of TPUHS events, the intensifying TPUHS corresponds to an anomalous upper-tropospheric high over the TP, which acts as the main source of a RWT that extends northeastward, via North China, the central Pacific and Alaska, to the northeastern Pacific region. This RWT breaks up while the anomalous high is temporarily replaced by an anomalous low due to the further deepened convective heating around the TPUHS peak. However, this anomalous low, though existing for only three to four days due to the counteracting dynamical effects of the persisting upper/lower divergence/convergence over the TP, acts as a new wave source to connect to an anomalous dynamical high over the Baikal region. Whilst the anomalous low is diminishing rapidly, this Baikal high becomes the main source of a new RWT, which develops eastward over the North Pacific region till around eight days after the TPUHS peak. Nevertheless, the anomaly centers along this decaying-TPUHS-related RWT mostly appear much weaker than those along the previous RWT. Therefore, their impacts on circulation and weather differ considerably from the developing to the decaying period of TPUHS events.

    Just Accepted Date: 17 May 2018   Issue Date: 20 June 2018
    Service
    E-mail this article
    E-mail Alert
    RSS
    Articles by authors
    Chuandong ZHU
    Rongcai REN
    Guoxiong WU
    Cite this article:   
    Chuandong ZHU,Rongcai REN,Guoxiong WU. Varying Rossby Wave Trains from the Developing to Decaying Period of the Upper Atmospheric Heat Source over the Tibetan Plateau in Boreal Summer[J]. Adv. Atmos. Sci., 2018, 35(9): 1114 -1128 .
    URL:  
    http://159.226.119.58/aas/EN/10.1007/s00376-017-7231-y     OR     
    http://159.226.119.58/aas/EN/Y2018/V35/I9/1114
    References
    1  
    2  
    3  
    4  
    5  
    6  
    Chen L. X.,Q. G. Zhu, H. B. Luo, J. H. He, M. Dong, and Z. Q. Feng, 1991: The East Asian Monsoon. Chinese Meteorological Press, 362 pp. (in Chinese)
    7  
    Duan A. M.,2003: The influence of thermal and mechanical forcing of Tibetan Plateau upon the climate patterns in East Asia. PhD Dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 23- 31. (in Chinese)
    8  
    9  
    10  
    11  
    Flohn H.,1960: Recent investigation on the mechanism of the "summer monsoon" of southern and eastern Asia. Proc. Symp. Monsoon of the World, New Delhi, Hind Union Press, 75- 88.
    12  
    13  
    14  
    15  
    16  
    17  
    18  
    19  
    Krishnamurti T. N.,S. M. Daggupaty, J. Fein, M. Kanamitsu, and J. D. Lee, 1973: Tibetan high and upper tropospheric tropical circulations during northern summer. Bull. Amer. Meteor. Soc., 54, 1234- 1249.
    20  
    21  
    22  
    Liu X.,G. X. Wu, W. P. Li, and Y. M. Liu, 2001a: Thermal adaptation of the large-scale circulation to the summer heating over the Tibetan Plateau. Progress in Natural Science, 11, 207- 214.
    23  
    24  
    25  
    26  
    27  
    28  
    29  
    30  
    31  
    32  
    33  
    34  
    35  
    36  
    Rodwell M. J.,B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 1385-1404, https://doi.org/10.1002/qj. 49712253408.
    37  
    38  
    39  
    40  
    41  
    42  
    Wang T. M.,G. X. Wu, and M. Ying, 2011: Comparison of diabatic heating data from NCEP/NCAR (I, II) and ERA40. Acta Scientiarum Naturalium Universitatis Sunyatseni, 50, 128- 134. (in Chinese)
    43  
    44  
    45  
    46  
    Wu G. X.,W. P. Li, H. Guo, H. Li, J. Xue, and Z. Wang, 1997: Sensible heat driven air-pump over the Tibetan Plateau and its impacts on the Asian summer monsoon. Collections on the Memory of Zhao Jiuzhang, D. Z. Ye, Ed., Chinese Science Press, 116- 126. (in Chinese)
    47  
    48  
    49  
    50  
    51  
    52  
    Yanai M.,G. X. Wu, 2006: Effects of the Tibetan Plateau. Chap. 13, Asian Monsoon, B. Wang, Ed., Springer, Chichester, 513- 549.
    53  
    54  
    55  
    56  
    Ye D. Z.,Y. X. Gao, 1979: Meteorology of Tibetan Plateau. Science Press, 278 pp. (in Chinese)
    57  
    Ye D. Z.,G. J. Yang, 1979: The Average Vertical Circulation over the Qinghai-Xizang Plateau. Science Press. (in Chinese)
    58  
    59  
    Zhang Y.,L. X. Chen, J. H. He, and W. Li, 2009: A study of the characteristics of the low-frequency circulation over the Tibetan Plateau and its association with precipitation in the Yangtze River valley in 1998. Acta Meteorologica Sinica, 23, 175- 190.
    60  
    Related
    [1] Jiapeng MIAO,Tao WANG,Huijun WANG,Yongqi GAO. Influence of Low-frequency Solar Forcing on the East Asian Winter Monsoon Based on HadCM3 and Observations[J]. Adv. Atmos. Sci., 2018, 35(9): 1205 -1215 .
    [2] Lang ZHANG,Yaoming MA,Weiqiang MA,Binbin WANG. Comparison of Different Generation Mechanisms of Free Convection between Two Stations on the Tibetan Plateau[J]. Adv. Atmos. Sci., 2018, 35(9): 1137 -1144 .
    [3] Julia CURIO,Yongren CHEN,Reinhard SCHIEMANN,Andrew G. TURNER,Kai Chi WONG,Kevin HODGES,Yueqing LI. Comparison of a Manual and an Automated Tracking Method for Tibetan Plateau Vortices[J]. Adv. Atmos. Sci., 2018, 35(8): 965 -980 .
    [4] Kai Chi WONG,Senfeng LIU,Andrew G. TURNER,Reinhard K. SCHIEMANN. Different Asian Monsoon Rainfall Responses to Idealized Orography Sensitivity Experiments in the HadGEM3-GA6 and FGOALS-FAMIL Global Climate Models[J]. Adv. Atmos. Sci., 2018, 35(8): 1049 -1062 .
    [5] Yu ZHAO,Anmin DUAN,Guoxiong WU. Interannual Variability of Late-spring Circulation and Diabatic Heating over the Tibetan Plateau Associated with Indian Ocean Forcing[J]. Adv. Atmos. Sci., 2018, 35(8): 927 -941 .
    [6] Yahao WU,Liping LIU. Statistical Characteristics of Raindrop Size Distribution in the Tibetan Plateau and Southern China[J]. Adv. Atmos. Sci., 2017, 34(6): 727 -736 .
    [7] Fangfang HUANG,Weiqiang MA,Binbin WANG,Zeyong HU,Yaoming MA,Genhou SUN,Zhipeng XIE,Yun LIN. Air Temperature Estimation with MODIS Data over the Northern Tibetan Plateau[J]. Adv. Atmos. Sci., 2017, 34(5): 650 -662 .
    [8] Liping LIU,Jiafeng ZHENG,Jingya WU. A Ka-band Solid-state Transmitter Cloud Radar and Data Merging Algorithm for Its Measurements[J]. Adv. Atmos. Sci., 2017, 34(4): 545 -558 .
    [9] Anmin DUAN,Ruizao SUN,Jinhai HE. Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land-Air-Sea Interaction Perspective[J]. Adv. Atmos. Sci., 2017, 34(2): 157 -168 .
    [10] Yang YANG,Rongcai REN. On the Contrasting Decadal Changes of Diurnal Surface Temperature Range between the Tibetan Plateau and Southeastern China during the 1980s-2000s[J]. Adv. Atmos. Sci., 2017, 34(2): 181 -198 .
    [11] Xiaolei CHEN, Yimin LIU, Guoxiong WU. Understanding the Surface Temperature Cold Bias in CMIP5 AGCMs over the Tibetan Plateau[J]. Adv. Atmos. Sci., 2017, 34(12): 1447 -1460 .
    [12] Lihua ZHU,Gang HUANG,Guangzhou FAN,Xia QU,Guijie ZHAO,Wei HUA. Evolution of Surface Sensible Heat over the Tibetan Plateau Under the Recent Global Warming Hiatus[J]. Adv. Atmos. Sci., 2017, 34(10): 1249 -1262 .
    [13] Guoxiong WU,Bian HE,Anmin DUAN,Yimin LIU,Wei YU. Formation and Variation of the Atmospheric Heat Source over the Tibetan Plateau and Its Climate Effects[J]. Adv. Atmos. Sci., 2017, 34(10): 1169 -1184 .
    [14] Ngar-Cheung LAU. The Pioneering Works of Professor Duzheng YE on Atmospheric Dispersion, Tibetan Plateau Meteorology, and Air-Sea Interaction[J]. Adv. Atmos. Sci., 2017, 34(10): 1137 -1149 .
    [15] WANG Leidi,LÜ Daren,HE Qing. The Impact of Surface Properties on Downward Surface Shortwave Radiation over the Tibetan Plateau[J]. Adv. Atmos. Sci., 2015, 32(6): 759 -771 .