• Adv. Atmos. Sci.  2018, Vol. 35 Issue (7): 796-812    DOI: 10.1007/s00376-017-7128-9
    An Asymmetric Spatiotemporal Connection between the Euro-Atlantic Blocking within the NAO Life Cycle and European Climates
    Yao YAO, Dehai LUO
    Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    Abstract
    Abstract  

    This paper examines an asymmetric spatiotemporal connection and climatic impact between the winter atmospheric blocking activity in the Euro-Atlantic sector and the life cycle of the North Atlantic Oscillation (NAO) during the period 1950-2012. Results show that, for positive NAO (NAO+) events, the instantaneous blocking (IB) frequency exhibits an enhancement along the southwest-northeast (SW-NE) direction from the eastern Atlantic to northeastern Europe (SW-NE pattern, hereafter), which is particularly evident during the NAO+ decaying stage. By contrast, for negative NAO (NAO-) events, the IB frequency exhibits a spatially asymmetric southeast-northwest (SE-NW) distribution from central Europe to the North Atlantic and Greenland (SE-NW pattern, hereafter). Moreover, for NAO- (NAO+) events, the most marked decrease (increase) in the surface air temperature (SAT) in winter over northern Europe is in the decaying stage. For NAO+ events, the dominant positive temperature and precipitation anomalies exhibit the SW-NE-oriented distribution from western to northeastern Europe, which is parallel to the NAO+-related blocking frequency distribution. For NAO- events, the dominant negative temperature anomaly is in northern and central Europe, whereas the dominant positive precipitation anomaly is distributed over southern Europe along the SW-NE direction. In addition, the downward infrared radiation controlled by the NAO's circulation plays a crucial role in the SAT anomaly distribution. It is further shown that the NAO's phase can act as an asymmetric impact on the European climate through producing this asymmetric spatiotemporal connection with the Euro-Atlantic IB frequency.

    Keywords North Atlantic Oscillation      blocking      temperature      precipitation      asymmetry     
    Just Accepted Date: 19 April 2018   Issue Date: 15 May 2018
    Service
    E-mail this article
    E-mail Alert
    RSS
    Articles by authors
    Yao YAO
    Dehai LUO
    Cite this article:   
    Yao YAO,Dehai LUO. An Asymmetric Spatiotemporal Connection between the Euro-Atlantic Blocking within the NAO Life Cycle and European Climates[J]. Adv. Atmos. Sci., 2018, 35(7): 796 -812 .
    URL:  
    http://159.226.119.58/aas/EN/10.1007/s00376-017-7128-9     OR     
    http://159.226.119.58/aas/EN/Y2018/V35/I7/796
    References
    1  
    2  
    3  
    4  
    5  
    6  
    7  
    8  
    9  
    10  
    11  
    12  
    13  
    14  
    15  
    16  
    17  
    18  
    19  
    20  
    21  
    22  
    23  
    24  
    25  
    26  
    27  
    28  
    29  
    30  
    31  
    32  
    33  
    34  
    35  
    36  
    37  
    38  
    39  
    40  
    41  
    42  
    43  
    44  
    45  
    46  
    47  
    48  
    49  
    50  
    Walker G. T.,E. W. Bliss, 1932: World weather. V. Mem. Roy. Meteor. Soc., 4, 53- 84.
    51  
    52  
    53  
    54  
    55  
    56  
    57  
    58  
    Related
    [1] Shangfeng CHEN,Linye SONG. Impact of the Winter North Pacific Oscillation on the Surface Air Temperature over Eurasia and North America: Sensitivity to the Index Definition[J]. Adv. Atmos. Sci., 2018, 35(6): 702 -712 .
    [2] Lei WANG,Guanghua CHEN. Impact of the Spring SST Gradient between the Tropical Indian Ocean and Western Pacific on Landfalling Tropical Cyclone Frequency in China[J]. Adv. Atmos. Sci., 2018, 35(6): 682 -688 .
    [3] Xianghui FANG,Fei ZHENG. Simulating Eastern- and Central-Pacific Type ENSO Using a Simple Coupled Model[J]. Adv. Atmos. Sci., 2018, 35(6): 671 -681 .
    [4] Xinping XU,Fei LI,Shengping HE,Huijun WANG. Subseasonal Reversal of East Asian Surface Temperature Variability in Winter 2014/15[J]. Adv. Atmos. Sci., 2018, 35(6): 737 -752 .
    [5] Chujie GAO,Haishan CHEN,Shanlei SUN,Bei XU,Victor ONGOMA,Siguang ZHU,Hedi MA,Xing LI. Regional Features and Seasonality of Land-Atmosphere Coupling over Eastern China[J]. Adv. Atmos. Sci., 2018, 35(6): 689 -701 .
    [6] Jiangyu MAO,Ming WANG. The 30-60-day Intraseasonal Variability of Sea Surface Temperature in the South China Sea during May-September[J]. Adv. Atmos. Sci., 2018, 35(5): 550 -566 .
    [7] Renping LIN,Fei ZHENG,Xiao DONG. ENSO Frequency Asymmetry and the Pacific Decadal Oscillation in Observations and 19 CMIP5 Models[J]. Adv. Atmos. Sci., 2018, 35(5): 495 -506 .
    [8] Lu LIU,Lingkun RAN,Shouting GAO. Analysis of the Characteristics of Inertia-Gravity Waves during an Orographic Precipitation Event[J]. Adv. Atmos. Sci., 2018, 35(5): 604 -620 .
    [9] Changyu ZHAO,Haishan CHEN,Shanlei SUN. Evaluating the Capabilities of Soil Enthalpy, Soil Moisture and Soil Temperature in Predicting Seasonal Precipitation[J]. Adv. Atmos. Sci., 2018, 35(4): 445 -456 .
    [10] Bo SUN. Asymmetric Variations in the Tropical Ascending Branches of Hadley Circulations and the Associated Mechanisms and Effects[J]. Adv. Atmos. Sci., 2018, 35(3): 317 -333 .
    [11] Yuan WANG,Jonathan M. VOGEL,Yun LIN,Bowen PAN,Jiaxi HU,Yangang LIU,Xiquan DONG,Jonathan H. JIANG,Yuk L. YUNG,Renyi ZHANG. Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles[J]. Adv. Atmos. Sci., 2018, 35(2): 234 -247 .
    [12] Shuang YU,Jiangjiang XIA,Zhongwei YAN,Kun YANG. Changing Spring Phenology Dates in the Three-Rivers Headwater Region of the Tibetan Plateau during 1960-2013[J]. Adv. Atmos. Sci., 2018, 35(1): 116 -126 .
    [13] Zhe HAN,Shuanglin LI. Precursor Role of Winter Sea-Ice in the Labrador Sea for Following-Spring Precipitation over Southeastern North America and Western Europe[J]. Adv. Atmos. Sci., 2018, 35(1): 65 -74 .
    [14] Xulin MA,Jie HE,Xuyang GE. Simulated Sensitivity of the Tropical Cyclone Eyewall Replacement Cycle to the Ambient Temperature Profile[J]. Adv. Atmos. Sci., 2017, 34(9): 1047 -1056 .
    [15] Quansheng GE, Haolong LIU, Xiang MA, Jingyun ZHENG, Zhixin HAO. Characteristics of Temperature Change in China over the Last 2000 years and Spatial Patterns of Dryness/Wetness during Cold and Warm Periods[J]. Adv. Atmos. Sci., 2017, 34(8): 941 -951 .