• Adv. Atmos. Sci.  2018, Vol. 35 Issue (7): 785-795    DOI: 10.1007/s00376-017-6327-8
    Long-Term Trends of Carbon Monoxide Total Columnar Amount in Urban Areas and Background Regions: Ground- and Satellite-based Spectroscopic Measurements
    Pucai WANG1(), N. F. ELANSKY2, Yu. M. TIMOFEEV3, Gengchen WANG1, G. S. GOLITSYN2, M. V. MAKAROVA3, V. S. RAKITIN2, Yu. SHTABKIN2, A. I. SKOROKHOD2, E. I. GRECHKO2, E.V. FOKEEVA2, A. N. SAFRONOV2, Liang RAN1, Ting WANG1
    1LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow 119017, Russia
    3St. Petersburg State University, Saint-Petersburg 198904, Russia
    Abstract
    Abstract  

    A comparative study was carried out to explore carbon monoxide total columnar amount (CO TC) in background and polluted atmosphere, including the stations of ZSS (Zvenigorod), ZOTTO (Central Siberia), Peterhof, Beijing, and Moscow, during 1998-2014, on the basis of ground- and satellite-based spectroscopic measurements. Interannual variations of CO TC in different regions of Eurasia were obtained from ground-based spectroscopic observations, combined with satellite data from the sensors MOPITT (2001-14), AIRS (2003-14), and IASI MetOp-A (2010-13). A decreasing trend in CO TC (1998-2014) was found at the urban site of Beijing, where CO TC decreased by 1.14% 0.87% yr-1. Meanwhile, at the Moscow site, CO TC decreased remarkably by 3.73% 0.39% yr-1. In the background regions (ZSS, ZOTTO, Peterhof), the reduction was 0.9%-1.7% yr-1 during the same period. Based on the AIRSv6 satellite data for the period 2003-14, a slight decrease (0.4%-0.6% yr-1) of CO TC was detected over the midlatitudes of Eurasia, while a reduction of 0.9%-1.2% yr-1 was found in Southeast Asia. The degree of correlation between the CO TC derived from satellite products (MOPITTv6 Joint, AIRSv6 and IASI MetOp-A) and ground-based measurements was calculated, revealing significant correlation in unpolluted regions. While in polluted areas, IASI MetOp-A and AIRSv6 data underestimated CO TC by a factor of 1.5-2.8. On average, the correlation coefficient between ground- and satellite-based data increased significantly for cases with PBL heights greater than 500 m.

    Keywords carbon monoxide      trend      spectroscopic measurement      MOPITT      AIRS      IASI     
    Just Accepted Date: 19 March 2018   Issue Date: 15 May 2018
    Service
    E-mail this article
    E-mail Alert
    RSS
    Articles by authors
    Pucai WANG
    N. F. ELANSKY
    Yu. M. TIMOFEEV
    Gengchen WANG
    G. S. GOLITSYN
    M. V. MAKAROVA
    V. S. RAKITIN
    Yu. SHTABKIN
    A. I. SKOROKHOD
    E. I. GRECHKO
    E.V. FOKEEVA
    A. N. SAFRONOV
    Liang RAN
    Ting WANG
    Cite this article:   
    Pucai WANG,N. F. ELANSKY,Yu. M. TIMOFEEV, et al. Long-Term Trends of Carbon Monoxide Total Columnar Amount in Urban Areas and Background Regions: Ground- and Satellite-based Spectroscopic Measurements[J]. Adv. Atmos. Sci., 2018, 35(7): 785 -795 .
    URL:  
    http://159.226.119.58/aas/EN/10.1007/s00376-017-6327-8     OR     
    http://159.226.119.58/aas/EN/Y2018/V35/I7/785
    References
    1  
    2  
    3  
    4  
    5  
    6  
    7  
    8  
    9  
    10  
    11  
    12  
    13  
    14  
    15  
    16  
    17  
    18  
    19  
    20  
    21  
    22  
    23  
    24  
    25  
    26  
    27  
    IPCC, 2001: Climate Change 2001: The Physical Science Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK and New York, USA.
    28  
    IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK and New York, USA.
    29  
    IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK and New York, USA.
    30  
    Khalil M. A. K.,J. P. Pinto, and M. J. Shearer, 1999: Preface: Atmospheric carbon monoxide. Chemosphere: Global Change Science 1,xi-xiii.
    31  
    Makarova M. V.,A. V. Poberovskii, and Y. M. Timofeev, 2004: Temporal Variability of Total Atmospheric Carbon Monoxide over St. Petersburg. Izvestiya, Atmospheric and Oceanic Physics, 40, 313- 322.
    32  
    33  
    34  
    35  
    36  
    37  
    38  
    39  
    40  
    41  
    42  
    43  
    44  
    45  
    46  
    47  
    48  
    49  
    50  
    Related
    [1] Bo SUN. Asymmetric Variations in the Tropical Ascending Branches of Hadley Circulations and the Associated Mechanisms and Effects[J]. Adv. Atmos. Sci., 2018, 35(3): 317 -333 .
    [2] Xuehua FAN,Xiang'ao XIA,Hongbin CHEN. Can MODIS Detect Trends in Aerosol Optical Depth over Land?[J]. Adv. Atmos. Sci., 2018, 35(2): 135 -145 .
    [3] Bo SUN,Huijun WANG. A Trend towards a Stable Warm and Windless State of the Surface Weather Conditions in Northern and Northeastern China during 1961-2014[J]. Adv. Atmos. Sci., 2017, 34(6): 713 -726 .
    [4] Yitian QIAN,Pang-Chi HSU,Chi-Han CHENG. Changes in Surface Energy Partitioning in China over the Past Three Decades[J]. Adv. Atmos. Sci., 2017, 34(5): 635 -649 .
    [5] Chengcheng NI,Guoping LI,Xiaozhen XIONG. Analysis of a Vortex Precipitation Event over Southwest China Using AIRS and In Situ Measurements[J]. Adv. Atmos. Sci., 2017, 34(4): 559 -570 .
    [6] Ping LIANG,Yihui DING. The Long-term Variation of Extreme Heavy Precipitation and Its Link to Urbanization Effects in Shanghai during 1916-2014[J]. Adv. Atmos. Sci., 2017, 34(3): 321 -334 .
    [7] Wai-Ming TO,Tat-Wai YU. Characterizing the Urban Temperature Trend Using Seasonal Unit Root Analysis: Hong Kong from 1970 to 2015[J]. Adv. Atmos. Sci., 2016, 33(12): 1376 -1385 .
    [8] YAO Zhigang,Jun LI,ZHAO Zengliang. Synergistic Use of AIRS and MODIS for Dust Top Height Retrieval over Land[J]. Adv. Atmos. Sci., 2015, 32(4): 470 -476 .
    [9] ZHENG Jing,Jun LI,Timothy J. SCHMIT,Jinlong LI,Zhiquan LIU. The Impact of AIRS Atmospheric Temperature and Moisture Profiles on Hurricane Forecasts: Ike (2008) and Irene (2011)[J]. Adv. Atmos. Sci., 2015, 32(3): 319 -335 .
    [10] Joon Jin SONG,Soohyun KWON,GyuWon LEE. Incorporation of Parameter Uncertainty into Spatial Interpolation Using Bayesian Trans-Gaussian Kriging[J]. Adv. Atmos. Sci., 2015, 32(3): 413 -423 .
    [11] CAO Ning,REN Baohua,ZHENG Jianqiu. Evaluation of CMIP5 Climate Models in Simulating 1979-2005 Oceanic Latent Heat Flux over the Pacific[J]. Adv. Atmos. Sci., 2015, 32(12): 1603 -1616 .
    [12] ZHANG Jie, Zhenglong LI, Jun LI, Jinglong LI. Ensemble Retrieval of Atmospheric Temperature Profiles from AIRS[J]. Adv. Atmos. Sci., 2014, 31(3): 559 -569 .
    [13] HUA Wei, Samuel S. P. SHEN, WANG Huijun. Analysis of Sampling Error Uncertainties and Trends in Maximum and Minimum Temperatures in China[J]. Adv. Atmos. Sci., 2014, 31(2): 263 -272 .
    [14] LIU Jing, ZHAI Panmao. Changes in Climate Regionalization Indices in China during 1961-2010[J]. Adv. Atmos. Sci., 2014, 31(2): 374 -384 .
    [15] HU Bo and WANG Yuesi. Variation Characteristics of Ultraviolet Radiation over the North China Plain[J]. Adv. Atmos. Sci., 2014, 31(1): 110 -117 .