• Adv. Atmos. Sci.  2017, Vol. 34 Issue (12): 1395-1403    DOI: 10.1007/s00376-017-6324-y.
    Contrasting the Skills and Biases of Deterministic Predictions for the Two Types of El Niño
    Fei ZHENG1, 2(), Jin-Yi YU3
    1International Center for Climate and Environment Science, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
    3Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA
    Abstract
    Abstract  

    The tropical Pacific has begun to experience a new type of El Niño, which has occurred particularly frequently during the last decade, referred to as the central Pacific (CP) El Niño. Various coupled models with different degrees of complexity have been used to make real-time El Niño predictions, but high uncertainty still exists in their forecasts. It remains unknown as to how much of this uncertainty is specifically related to the new CP-type El Niño and how much is common to both this type and the conventional Eastern Pacific (EP)-type El Niño. In this study, the deterministic performance of an El Niño-Southern Oscillation (ENSO) ensemble prediction system is examined for the two types of El Niño. Ensemble hindcasts are run for the nine EP El Niño events and twelve CP El Niño events that have occurred since 1950. The results show that (1) the skill scores for the EP events are significantly better than those for the CP events, at all lead times; (2) the systematic forecast biases come mostly from the prediction of the CP events; and (3) the systematic error is characterized by an overly warm eastern Pacific during the spring season, indicating a stronger spring prediction barrier for the CP El Niño. Further improvements to coupled atmosphere-ocean models in terms of CP El Niño prediction should be recognized as a key and high-priority task for the climate prediction community.

    Keywords ENSO      EP El Niño      CP El Niño      prediction skill      systematic bias      spring prediction barrier     
    Issue Date: 08 November 2017
    Service
    E-mail this article
    E-mail Alert
    RSS
    Articles by authors
    Fei ZHENG
    Jin-Yi YU
    Cite this article:   
    Fei ZHENG,Jin-Yi YU. Contrasting the Skills and Biases of Deterministic Predictions for the Two Types of El Niño[J]. Adv. Atmos. Sci., 2017, 34(12): 1395 -1403 .
    URL:  
    http://159.226.119.58/aas/EN/10.1007/s00376-017-6324-y.     OR     
    http://159.226.119.58/aas/EN/Y2017/V34/I12/1395
    References
    1  
    2  
    3  
    4  
    5  
    6  
    7  
    8  
    9  
    10  
    11  
    12  
    13  
    14  
    15  
    Kirtman B. P., J. Shukla, M. Balmaseda, N. Graham, C. Penland , Y. Xue, and S. Zebiak, 2001: Current status of ENSO forecast skill: A report to the Climate Variability and Predictability (CLIVAR) Working Group on Seasonal to Interannual Prediction. WCRP Informal Report No. 23/01,31pp.
    16  
    17  
    Luo J.-J., C.-X. Yuan, W. Sasaki, Y. Masumoto, T. Yamagata, J.-Y. Lee, and S. Masson, 2016: Current status of intraseasonal-seasonal-to-interannual prediction of the Indo-Pacific climate. The Indo-Pacific Climate Variability and Predictability, T. Yamagata, and S. Behera, Eds., The World Scientific Publisher, doi: 10.1142/9789814696623_0003.
    18  
    19  
    20  
    21  
    22  
    23  
    Picaut J., E. Hackert, A. J. Busalacchi, R. Murtugudde, and G. S. E. Lagerloef, 2002: Mechanisms of the 1997-1998 El Niño-La ña, as inferred from space-based observations. J. Geophys. Res., 107,3037, doi: 10.1029/2001JC000850.
    24  
    Ren H.-L., F.-F. Jin, 2011: ño indices for two types of ENSO. Geophys. Res. Lett., 38,L04704, doi: 10.1029/2010 GL046031.
    25  
    Röckner, E., Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Report No. 218, Max-Planck-Institut für Meteorologie, Hamburg, 90pp.
    26  
    27  
    28  
    29  
    30  
    31  
    32  
    33  
    34  
    35  
    36  
    37  
    38  
    39  
    40  
    41  
    42  
    43  
    44  
    45  
    46  
    47  
    48  
    49  
    50  
    51  
    52  
    Zhu J. S., B. H. Huang, R.-H. Zhang, Z.-Z. Hu, Arun Kumar, M. A. Balmaseda, L. Marx, and J. L. Kinter III, 2014: Salinity anomaly as a trigger for ENSO events. Scientific Reports, 4, 6821, doi: 10.1038/srep06821.
    Supplementary
    [1]
    Electronic Supplementary Material to: Contrasting the Skills and Biases of Deterministic Predictions for the Two Types of El Niño
    Related
    [1] Jianhuang QIN,Ruiqiang DING,Zhiwei WU,Jianping LI,Sen ZHAO. Relationships between the Extratropical ENSO Precursor and Leading Modes of Atmospheric Variability in the Southern Hemisphere[J]. Adv. Atmos. Sci., 2017, 34(3): 360 -370 .
    [2] Anmin DUAN,Ruizao SUN,Jinhai HE. Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land-Air-Sea Interaction Perspective[J]. Adv. Atmos. Sci., 2017, 34(2): 157 -168 .
    [3] Fei ZHENG,Jianping LI,Ruiqiang DING. Influence of the Preceding Austral Summer Southern Hemisphere Annular Mode on the Amplitude of ENSO Decay[J]. Adv. Atmos. Sci., 2017, 34(11): 1358 -1379 .
    [4] Tingting HAN,Huijun WANG,Jianqi SUN. Strengthened Relationship between the Antarctic Oscillation and ENSO After the Mid-1990s during Austral Spring[J]. Adv. Atmos. Sci., 2017, 34(1): 54 -65 .
    [5] Renguang WU. Relationship between Indian and East Asian Summer Rainfall Variations[J]. Adv. Atmos. Sci., 2017, 34(1): 4 -15 .
    [6] Lin CHEN,Tim LI,Swadhin K. BEHERA,Takeshi DOI. Distinctive Precursory Air-Sea Signals between Regular and Super El Niños[J]. Adv. Atmos. Sci., 2016, 33(8): 996 -1004 .
    [7] Chuan GAO,Xinrong WU,Rong-Hua ZHANG. Testing a Four-Dimensional Variational Data Assimilation Method Using an Improved Intermediate Coupled Model for ENSO Analysis and Prediction[J]. Adv. Atmos. Sci., 2016, 33(7): 875 -888 .
    [8] Xiao DONG,Renping LIN,Jiang ZHU,Zeting LU. Evaluation of Ocean Data Assimilation in CAS-ESM-C: Constraining the SST Field[J]. Adv. Atmos. Sci., 2016, 33(7): 795 -807 .
    [9] Ben TIAN,Wansuo DUAN. Comparison of Constant and Time-variant Optimal Forcing Approaches in El Niño Simulations by Using the Zebiak-Cane Model[J]. Adv. Atmos. Sci., 2016, 33(6): 685 -694 .
    [10] Xiao-Tong ZHENG,Lihui GAO,Gen LI,Yan DU. The Southwest Indian Ocean Thermocline Dome in CMIP5 Models: Historical Simulation and Future Projection[J]. Adv. Atmos. Sci., 2016, 33(4): 489 -503 .
    [11] Shang-Ping XIE,Yu KOSAKA,Yan DU,Kaiming HU,Jasti S. CHOWDARY,Gang HUANG. Indo-Western Pacific Ocean Capacitor and Coherent Climate Anomalies in Post-ENSO Summer: A Review[J]. Adv. Atmos. Sci., 2016, 33(4): 411 -432 .
    [12] Yan SUN,Fan WANG,De-Zheng SUN. Weak ENSO Asymmetry Due to Weak Nonlinear Air-Sea Interaction in CMIP5 Climate Models[J]. Adv. Atmos. Sci., 2016, 33(3): 352 -364 .
    [13] Xia ZHAO,Dongliang YUAN,Guang YANG,Hui ZHOU,Jing WANG. Role of the Oceanic Channel in the Relationships between the Basin/Dipole Mode of SST Anomalies in the Tropical Indian Ocean and ENSO Transition[J]. Adv. Atmos. Sci., 2016, 33(12): 1386 -1400 .
    [14] JIANG Yuxin,TAN Benkui. Two Modes and Their Seasonal and Interannual Variation of the Baroclinic Waves/Storm Tracks over the Wintertime North Pacific[J]. Adv. Atmos. Sci., 2015, 32(9): 1244 -1254 .
    [15] ZHOU Qian,DUAN Wansuo,MU Mu,FENG Rong. Influence of Positive and Negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow: Results from Sensitivity Experiments[J]. Adv. Atmos. Sci., 2015, 32(6): 783 -793 .