• Adv. Atmos. Sci.  2018, Vol. 35 Issue (1): 5-13    DOI: 10.1007/s00376-017-6290-4
    Using NWP to Assess the Influence of the Arctic Atmosphere on Midlatitude Weather and Climate
    Tido SEMMLER(), Thomas JUNG, Marta A. KASPER, Soumia SERRAR
    Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany

    The influence of the Arctic atmosphere on Northern Hemisphere midlatitude tropospheric weather and climate is explored by comparing the skill of two sets of 14-day weather forecast experiments using the ECMWF model with and without relaxation of the Arctic atmosphere towards ERA-Interim reanalysis data during the integration. Two pathways are identified along which the Arctic influences midlatitude weather: a pronounced one over Asia and Eastern Europe, and a secondary one over North America. In general, linkages are found to be strongest (weakest) during boreal winter (summer) when the amplitude of stationary planetary waves over the Northern Hemisphere is strongest (weakest). No discernible Arctic impact is found over the North Atlantic and North Pacific region, which is consistent with predominantly southwesterly flow. An analysis of the flow-dependence of the linkages shows that anomalous northerly flow conditions increase the Arctic influence on midlatitude weather over the continents. Specifically, an anomalous northerly flow from the Kara Sea towards West Asia leads to cold surface temperature anomalies not only over West Asia but also over Eastern and Central Europe. Finally, the results of this study are discussed in the light of potential midlatitude benefits of improved Arctic prediction capabilities.

    Keywords Arctic      atmosphere      relaxation      northern midlatitudes      linkage      model     
    Just Accepted Date: 24 April 2017   Issue Date: 08 December 2017
    E-mail this article
    E-mail Alert
    Articles by authors
    Tido SEMMLER
    Thomas JUNG
    Marta A. KASPER
    Soumia SERRAR
    Cite this article:   
    Tido SEMMLER,Thomas JUNG,Marta A. KASPER, et al. Using NWP to Assess the Influence of the Arctic Atmosphere on Midlatitude Weather and Climate[J]. Adv. Atmos. Sci., 2018, 35(1): 5 -13 .
    URL:     OR
    Barnston, A. G. and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115( 6), 1083- 1126.http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%281987%29115%3C1083%3ACSAPOL%3E2.0.CO%3B2
    doi: 10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2
    Budikova D., 2009: Role of Arctic sea ice in global atmospheric circulation: A review. Global and Planetary Change, 68( 3), 149- 163.http://linkinghub.elsevier.com/retrieve/pii/S0921818109000654
    doi: 10.1016/j.gloplacha.2009.04.001
    Cohen J., K. Saito, and D. Entekhabi, 2001: The role of the Siberian high in Northern Hemisphere climate variability. Geophys. Res. Lett,, 28( 2), 299- 302.http://doi.wiley.com/10.1029/2000GL011927
    doi: 10.1029/2000GL011927
    Cohen J. L., M. A. Barlow, V. A. Alexeev, J. E. Cherry, et al., 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environmental Research Letters, 7( 1), 14 007- 14 014.http://stacks.iop.org/1748-9326/7/i=1/a=014007?key=crossref.b774aafc53389f43a9e3492e8a36e8b1
    doi: 10.1088/1748-9326/7/1/014007
    Francis J. A., W. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett,, 36( 7), L07503.http://onlinelibrary.wiley.com/doi/10.1029/2009GL037274/full
    doi: 10.1029/2009GL037274
    Francis, J. A. and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett,, 39( 6), L06801.http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
    doi: 10.1029/2012GL051000
    Gao Y., et al., 2015: Arctic Sea Ice and Eurasian Climate: A Review. Adv. Atmos. Sci,, 32, 92- 114.http://link.springer.com/10.1007/s00376-014-0009-6
    doi: 10.1007/s00376-014-0009-6
    Honda M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett,, 36( 8), L08707.http://www.cabdirect.org/abstracts/20103055291.html
    doi: 10.1029/2008GL037079
    Jung T., M. A. Kasper, T. Semmler, and S. Serrar, 2014: Arctic influence on medium-range and extended-range prediction in mid-latitudes. Geophys. Res. Lett 41, https://doi.org/10.1002/2014GL059961.
    Jung T., M. Miller, and T. Palmer, 2010a: Diagnosing the origin of extended-range forecast errors. Mon. Wea. Rev,, 138( 6), 2434- 2446.http://journals.ametsoc.org/doi/abs/10.1175/2010MWR3255.1
    doi: 10.1175/2010MWR3255.1
    Jung T., T. Palmer, M. Rodwell, and S. Serrar, 2010b: Understanding the Anomalously Cold European Winter of 2005/06 Using Relaxation Experiments. Mon. Wea. Rev,, 138( 8), 3157- 3174.http://journals.ametsoc.org/doi/abs/10.1175/2010MWR3258.1
    doi: 10.1175/2010MWR3258.1
    Overland, J. E. and M. Wang, 2016: Recent extreme Arctic temperatures are due to a split polar vortex. J, Climate, 29( 15), 5609- 5616.http://adsabs.harvard.edu/abs/2016JCli...29.5609O
    doi: 10.1175/JCLI-D-16-0320.1
    Parkinson, C. L. and J. C. Comiso, 2013: On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophys. Res. Lett,, 40( 7), 1356- 1361.http://doi.wiley.com/10.1002/grl.50349
    doi: 10.1002/grl.50349
    Semmler T., M. A. Kasper, T. Jung, and S. Serrar, 2016: Remote impact of the Antarctic atmosphere on the Southern mid-latitudes. Meteorologische Zeitschrift, 25, 71- 77.http://www.schweizerbart.de/papers/metz/detail/25/85163/Remote_impact_of_the_Antarctic_atmosphere_on_the_s?af=crossref
    doi: 10.1127/metz/2015/0685
    Tang Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters, 8( 1), 014036.http://stacks.iop.org/1748-9326/8/i=1/a=014036?key=crossref.3b07e12952c5b61acb8cedc9b207e051
    doi: 10.1088/1748-9326/8/1/014036
    Vihma T., 2014: Effects of Arctic Sea Ice Decline on Weather and Climate: A Review. Surveys in Geophysics, 1- 40.http://link.springer.com/10.1007/s10712-014-9284-0
    doi: 10.1007/s10712-014-9284-0
    Wu B., J. Su, and R. DArrigo, 2015: Patterns of Asian winter climate variability and links to Arctic sea ice. J, Climate, 28( 17), 6841- 6858.http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX201510004011.htm
    doi: 10.1175/JCLI-D-14-00274.1
    [1] Michael KELLEHER,James SCREEN. Atmospheric Precursors of and Response to Anomalous Arctic Sea Ice in CMIP5 Models[J]. Adv. Atmos. Sci., 2018, 35(1): 27 -37 .
    [2] Shuang YU,Jiangjiang XIA,Zhongwei YAN,Kun YANG. Changing Spring Phenology Dates in the Three-Rivers Headwater Region of the Tibetan Plateau during 1960-2013[J]. Adv. Atmos. Sci., 2018, 35(1): 116 -126 .
    [3] James E. OVERLAND,Muyin WANG,Thomas J. BALLINGER. Recent Increased Warming of the Alaskan Marine Arctic Due to Midlatitude Linkages[J]. Adv. Atmos. Sci., 2018, 35(1): 75 -84 .
    [4] Hoffman H. N. CHEUNG,Noel KEENLYSIDE,Nour-Eddine OMRANI,Wen ZHOU. Remarkable Link between Projected Uncertainties of Arctic Sea-Ice Decline and Winter Eurasian Climate[J]. Adv. Atmos. Sci., 2018, 35(1): 38 -51 .
    [5] Jinping ZHAO,David BARBER,Shugang ZHANG,Qinghua YANG,Xiaoyu WANG,Hongjie XIE. Record Low Sea-Ice Concentration in the Central Arctic during Summer 2010[J]. Adv. Atmos. Sci., 2018, 35(1): 106 -115 .
    [6] Gian A. VILLAMIL-OTERO,Jing ZHANG,Juanxiong HE,Xiangdong ZHANG. Role of Extratropical Cyclones in the Recently Observed Increase in Poleward Moisture Transport into the Arctic Ocean[J]. Adv. Atmos. Sci., 2018, 35(1): 85 -94 .
    [7] Xiangxiang ZHANG,Yongjiu DAI,Hongzhi CUI,Robert E. DICKINSON,Siguang ZHU,Nan WEI,Binyan YAN,Hua YUAN,Wei SHANGGUAN,Lili WANG,Wenting FU. Evaluating Common Land Model Energy Fluxes Using FLUXNET Data[J]. Adv. Atmos. Sci., 2017, 34(9): 1035 -1046 .
    [8] Yunfei FU,Jiachen ZHU,Yuanjian YANG,Renmin YUAN,Guosheng LIU,Tao XIAN,Peng LIU. Grid-cell Aerosol Direct Shortwave Radiative Forcing Calculated Using the SBDART Model with MODIS and AERONET Observations: An Application in Winter and Summer in Eastern China[J]. Adv. Atmos. Sci., 2017, 34(8): 952 -964 .
    [9] Chuhan LU. A Modified Algorithm for Identifying and Tracking Extratropical Cyclones[J]. Adv. Atmos. Sci., 2017, 34(7): 909 -924 .
    [10] Hui LIU,Bo HU,Yuesi WANG,Guangren LIU,Liqin TANG,Dongsheng JI,Yongfei BAI,Weikai BAO,Xin CHEN,Yunming CHEN,Weixin DING,Xiaozeng HAN,Fei HE,Hui HUANG,Zhenying HUANG,Xinrong LI,Yan LI,Wenzhao LIU,Luxiang LIN,Zhu OUYANG,Boqiang QIN,Weijun SHEN,Yanjun SHEN,Hongxin SU,Changchun SONG,Bo SUN,Song SUN,Anzhi WANG,Genxu WANG,Huimin WANG,Silong WANG,Youshao WANG,Wenxue WEI,Ping XIE,Zongqiang XIE,Xiaoyuan YAN,Fanjiang ZENG,Fawei ZHANG,Yangjian ZHANG,Yiping ZHANG,Chengyi ZHAO,Wenzhi ZHAO,Xueyong ZHAO,Guoyi ZHOU,Bo ZHU. Two Ultraviolet Radiation Datasets that Cover China[J]. Adv. Atmos. Sci., 2017, 34(7): 805 -815 .
    [11] Ling-Jiang TAO,Rong-Hua ZHANG,Chuan GAO. Initial Error-induced Optimal Perturbations in ENSO Predictions, as Derived from an Intermediate Coupled Model[J]. Adv. Atmos. Sci., 2017, 34(6): 791 -803 .
    [12] Xing ZHANG,Mu MU,Qiang WANG,Stefano PIERINI. Optimal Precursors Triggering the Kuroshio Extension State Transition Obtained by the Conditional Nonlinear Optimal Perturbation Approach[J]. Adv. Atmos. Sci., 2017, 34(6): 685 -699 .
    [13] Xuejie GAO,Ying SHI,Zhenyu HAN,Meili WANG,Jia WU,Dongfeng ZHANG,Ying XU,Filippo GIORGI. Performance of RegCM4 over Major River Basins in China[J]. Adv. Atmos. Sci., 2017, 34(4): 441 -455 .
    [14] Lei ZHANG,Xiquan DONG,Aaron KENNEDY,Baike XI,Zhanqing LI. Evaluation of NASA GISS Post-CMIP5 Single Column Model Simulated Clouds and Precipitation Using ARM Southern Great Plains Observations[J]. Adv. Atmos. Sci., 2017, 34(3): 306 -320 .
    [15] Jang-Woon WANG, Jae-Jin KIM, Wonsik CHOI, Da-Som MUN, Jung-Eun KANG, Hataek KWON, Jin-Soo KIM, Kyung-Soo HAN. Effects of Wind Fences on the Wind Environment around Jang Bogo Antarctic Research Station[J]. Adv. Atmos. Sci., 2017, 34(12): 1404 -1414 .