• Adv. Atmos. Sci.  2015, Vol. 32 Issue (9): 1277-1290    DOI: 10.1007/s00376-015-4234-4
    Classification of Precipitation Types Using Fall Velocity-Diameter Relationships from 2D-Video Distrometer Measurements
    Jeong-Eun LEE1,Sung-Hwa JUNG1,2,Hong-Mok PARK2,Soohyun KWON1,Pay-Liam LIN3,GyuWon LEE1,2()
    1Department of Astronomy and Atmospheric Sciences, Research and Training Team for Future Creative Astrophysicists and Cosmologists, Kyungpook National University, Korea
    2Center for Atmospheric Remote Sensing, Kyungpook National University, Korea
    3Departmentof Atmospheric Sciences, NCU, Taipei
    Abstract
    Abstract  

    Fall velocity-diameter relationships for four different snowflake types (dendrite, plate, needle, and graupel) were investigated in northeastern South Korea, and a new algorithm for classifying hydrometeors is proposed for distrometric measurements based on the new relationships. Falling ice crystals (approximately 40 000 particles) were measured with a two-dimensional video disdrometer (2DVD) during a winter experiment from 15 January to 9 April 2010. The fall velocity-diameter relationships were derived for the four types of snowflakes based on manual classification by experts using snow photos and 2DVD measurements: the coefficients (exponents) for different snowflake types were 0.82 (0.24) for dendrite, 0.74 (0.35) for plate, 1.03 (0.71) for needle, and 1.30 (0.94) for graupel, respectively. These new relationships established in the present study (PS) were compared with those from two previous studies. Hydrometeor types were classified with the derived fall velocity-diameter relationships, and the classification algorithm was evaluated using 3× 3 contingency tables for one rain-snow transition event and three snowfall events. The algorithm showed good performance for the transition event: the critical success indices (CSIs) were 0.89, 0.61 and 0.71 for snow, wet-snow and rain, respectively. For snow events, the algorithm performance for dendrite and plate (CSIs = 1.0 and 1.0, respectively) was better than for needle and graupel (CSIs = 0.67 and 0.50, respectively).

    Keywords snowflake types      wet snow      fall velocity-diameter      hydrometeor type classification      2DVD     
    Issue Date: 26 March 2015
    Service
    E-mail this article
    E-mail Alert
    RSS
    Articles by authors
    Jeong-Eun LEE
    Sung-Hwa JUNG
    Hong-Mok PARK
    Soohyun KWON
    Pay-Liam LIN
    GyuWon LEE
    Cite this article:   
    Jeong-Eun LEE,Sung-Hwa JUNG,Hong-Mok PARK, et al. Classification of Precipitation Types Using Fall Velocity-Diameter Relationships from 2D-Video Distrometer Measurements[J]. Adv. Atmos. Sci., 2015, 32(9): 1277 -1290 .
    URL:  
    http://159.226.119.58/aas/EN/10.1007/s00376-015-4234-4     OR     
    http://159.226.119.58/aas/EN/Y2015/V32/I9/1277
    References
    1  
    Amemoya Y., 1997: Generalization of the TLS approach in the errors-in-variables problem. Proc. the Second International Workshop on Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling, S. Van Huffel, Ed., SISM, 77- 86.
    2  
    Atlas D., Srivastava R. C. and Sekhon R. S., 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11, 1- 35.
    3  
    Baker, B., Coauthors, 2012: How well are we measuring snow? The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811- 829.
    4  
    Barthazy E., R. Schefold, 2006: Fall velocity of snowflakes of different riming degree and crystal types. Atmospheric Research, 82, 391- 398.
    5  
    Brand es, E. A., K. Ikeda, G. Thompson, M. Schönhuber, 2008: Aggregate terminal velocity/temperature relations. J. Appl. Meteor. Climatol., 47, 2729- 2736.
    6  
    Fujiyoshi Y., T. Endoh, T. Yamada, K. Tsuboki, Y. Tachibana, and G. Wakahama, 1990: Determination of a Z-R relationship for snowfall using a radar and high sensitivity snow gauges. J. Appl. Meteor., 29, 147- 152.
    7  
    Garrett T. J., S. E. Yuter, 2014: Observed influence of riming, temperature, and turbulence on the fallspeed of solid precipitation. Geophys. Res. Lett., 41, 6515- 6522.
    8  
    Grazioli J., D. Tuia, S. Monhart, M. Schneebeli, T. Raupach, and A. Berne, 2014: Hydrometeor classification from two-dimensional video disdrometer data. Atmos. Meas. Tech., 7, 2869- 2882.
    9  
    Hansch M., 1999: Fall velocity and shape of snowflakes. Ph. D. thesis, Swiss Federal Institute of Technology, 117 pp.
    10  
    Huang G.-J., V. N. Bringi, R. Cifelli, D. Hudak, and W. A. Petersen, 2010: A methodology to derive radar reflectivity-liquid equivalent snow rate relations using C-Band radar and a 2D video disdrometer. J. Atmos. Oceanic Technol., 27, 637- 651.
    11  
    Kruger A., W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602- 617.
    12  
    Langleben M. P., 1954: The terminal velocity of snowflakes. Quart. J. Roy. Meteor. Soc., 80, 174- 181.
    13  
    Lim S., V. Chand rasekar, and V. N. Bringi, 2005: Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens., 43, 792- 801.
    14  
    Liu H. P., V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140- 164.
    15  
    Locatelli J. D., P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 2185- 2197.
    16  
    Matrosov S. Y., 1992: Radar reflectivity in snowfall. IEEE Trans. Geosci. Remote Sens., 30, 454- 461.
    17  
    Matrosov S. Y., 1998: A dual-wavelength radar method to measure snowfall rate. J. Appl. Meteor., 37, 1510- 1521.
    18  
    Moisseev D., E. Saltikoff, and M. Leskinen, 2009: Dual-polarization weather radar observations of snow growth processes. 34th Conference on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 13B. 2.
    19  
    Nitu R., 2013: Cold as SPICE. Meteorological Technology International, 148- 150.
    20  
    Park H. S., A. V. Ryzhkov, D. S. Zrnić and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea.Forecasting, 24, 730- 748.
    21  
    Rasmussen R., M. Dixon, S. Vasiloff, F. Hage, S. Knight, J. Vivekanand an, and M. Xu, 2003: Snow nowcasting using a real-time correlation of radar reflectivity with snow gauge accumulation. J. Appl. Meteor., 42, 20- 36.
    22  
    Roebber P. J., S. L. Bruening, D. M. Schultz, and J. V. Cortinas Jr., 2003: Improving snowfall forecasting by diagnosing snow density. Wea.Forecasting, 18, 264- 287.
    23  
    Schonhuber M., Lammer G., and Randeu W. L., 2008: The 2D-Video-Distrometer. Precipitation: Advances in Measurement, Estimation, and Prediction, S. Michaelides, Ed. Springer, 3- 31.
    24  
    Sheppard B. E., P. I. Joe, 2000: Automated precipitation detection and typing in winter: A two-year study. J. Atmos. Oceanic Technol., 17, 1493- 1507.
    25  
    26  
    Vivekanand an, J., S. Ellis, D. Oye, D. S. Zrnic, A. V. Ryzhkov, J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381- 388.
    27  
    Wilks D., 2006: Statistical methods in the atmospheric sciences,2nd ed., Academic, Burlington, Mass, 627 pp.
    28  
    Yuter S. E., D. E. Kingsmill, L. B. Nance, and M. Loffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 1450- 1464.
    29  
    Zawadzki I., E. Jung, and G. Lee, 2010: Snow Studies. Part I: A study of natural variability of snow terminal velocity. J. Atmos. Sci., 67, 1591- 1604.
    Related
    No related articles found!